-
Cochrane Db Syst Rev · Jan 2018
ReviewWhole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases.
- May N Tsao, Wei Xu, Rebecca Ks Wong, Nancy Lloyd, Normand Laperriere, Arjun Sahgal, Eileen Rakovitch, and Edward Chow.
- Department of Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario, Canada, M4N 3M5.
- Cochrane Db Syst Rev. 2018 Jan 25; 1: CD003869.
BackgroundThis is an update to the review published in the Cochrane Library (2012, Issue 4).It is estimated that 20% to 40% of people with cancer will develop brain metastases during the course of their illness. The burden of brain metastases impacts quality and length of survival.ObjectivesTo assess the effectiveness and adverse effects of whole brain radiotherapy (WBRT) given alone or in combination with other therapies to adults with newly diagnosed multiple brain metastases.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase to May 2017 and the National Cancer Institute Physicians Data Query for ongoing trials.Selection CriteriaWe included phase III randomised controlled trials (RCTs) comparing WBRT versus other treatments for adults with newly diagnosed multiple brain metastases.Data Collection And AnalysisTwo review authors independently assessed trial quality and abstracted information in accordance with Cochrane methods.Main ResultsWe added 10 RCTs to this updated review. The review now includes 54 published trials (45 fully published reports, four abstracts, and five subsets of data from previously published RCTs) involving 11,898 participants.Lower biological WBRT doses versus controlThe hazard ratio (HR) for overall survival (OS) with lower biological WBRT doses as compared with control (3000 cGy in 10 daily fractions) was 1.21 (95% confidence interval (CI) 1.04 to 1.40; P = 0.01; moderate-certainty evidence) in favour of control. The HR for neurological function improvement (NFI) was 1.74 (95% CI 1.06 to 2.84; P = 0.03; moderate-certainty evidence) in favour of control fractionation.Higher biological WBRT doses versus controlThe HR for OS with higher biological WBRT doses as compared with control (3000 cGy in 10 daily fractions) was 0.97 (95% CI 0.83 to 1.12; P = 0.65; moderate-certainty evidence). The HR for NFI was 1.14 (95% CI 0.92 to 1.42; P = 0.23; moderate-certainty evidence).WBRT and radiosensitisersThe addition of radiosensitisers to WBRT did not confer additional benefit for OS (HR 1.05, 95% CI 0.99 to 1.12; P = 0.12; moderate-certainty evidence) or for brain tumour response rates (odds ratio (OR) 0.84, 95% CI 0.63 to 1.11; P = 0.22; high-certainty evidence).Radiosurgery and WBRT versus WBRT aloneThe HR for OS with use of WBRT and radiosurgery boost as compared with WBRT alone for selected participants was 0.61 (95% CI 0.27 to 1.39; P = 0.24; moderate-certainty evidence). For overall brain control at one year, the HR was 0.39 (95% CI 0.25 to 0.60; P < 0.0001; high-certainty evidence) favouring the WBRT and radiosurgery boost group.Radiosurgery alone versus radiosurgery and WBRTThe HR for local brain control was 2.73 (95% CI 1.87 to 3.99; P < 0.00001; high-certainty evidence)favouring the addition of WBRT to radiosurgery. The HR for distant brain control was 2.34 (95% CI 1.73 to 3.18; P < 0.00001; high-certainty evidence) favouring WBRT and radiosurgery. The HR for OS was 1.00 (95% CI 0.80 to 1.25; P = 0.99; moderate-certainty evidence). Two trials reported worse neurocognitive outcomes and one trial reported worse quality of life outcomes when WBRT was added to radiosurgery.We could not pool data from trials related to chemotherapy, optimal supportive care (OSC), molecular targeted agents, neurocognitive protective agents, and hippocampal sparing WBRT. However, one trial reported no differences in quality-adjusted life-years for selected participants with brain metastases from non-small-cell lung cancer randomised to OSC and WBRT versus OSC alone. None of the trials with altered higher biological WBRT dose-fractionation schemes reported benefit for OS, NFI, or symptom control compared with standard care. However, OS and NFI were worse for lower biological WBRT dose-fractionation schemes than for standard dose schedules.The addition of WBRT to radiosurgery improved local and distant brain control in selected people with brain metastases, but data show worse neurocognitive outcomes and no differences in OS.Selected people with multiple brain metastases from non-small-cell lung cancer may show no difference in OS when OSC is given and WBRT is omitted.Use of radiosensitisers, chemotherapy, or molecular targeted agents in conjunction with WBRT remains experimental.Further trials are needed to evaluate the use of neurocognitive protective agents and hippocampal sparing with WBRT. As well, future trials should examine homogeneous participants with brain metastases with focus on prognostic features and molecular markers.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.