• Dtsch Arztebl Int · Mar 2021

    Review

    Artificial Intelligence in Pathology.

    • Sebastian Försch, Frederick Klauschen, Peter Hufnagl, and Wilfried Roth.
    • Institute of Pathology, University Medical Center Mainz, Mainz; Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin.
    • Dtsch Arztebl Int. 2021 Mar 26; 118 (12): 194-204.

    BackgroundIncreasing digitalization enables the use of artificial intelligence (AI) and machine learning in pathology. However, these technologies have only just begun to be implemented, and no randomized prospective trials have yet shown a benefit of AI-based diagnosis. In this review, we present current concepts, illustrate them with examples from representative publications, and discuss the possibilities and limitations of their use.MethodsThis article is based on the results of a search in PubMed for articles published between January 1950 and January 2020 containing the searching terms "artificial intelligence," "deep learning," and "digital pathology," as well as the authors' own research findings.ResultsCurrent research on AI in pathology focuses on supporting routine diagnosis and on prognostication, particularly for patients with cancer. Initial data indicate that pathologists can arrive at a diagnosis faster and more accurately with the aid of a computer. In a pilot study on the diagnosis of breast cancer, involving 70 patients, sensitivity for the detection of micrometastases rose from 83.3% (by a pathologist alone) to 91.2% (by a pathologist combined with a computer algorithm). The evidence likewise suggests that AI applied to histomorphological properties of cells during microscopy may enable the inference of certain genetic properties, such as mutations in key genes and deoxyribonucleic acid (DNA) methylation profiles.ConclusionInitial proof-of-concept studies for AI in pathology are now available. Randomized, prospective studies are now needed so that these early findings can be confirmed or falsified.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.