• Am. J. Obstet. Gynecol. · Dec 2019

    Prospective evaluation of screening performance of first-trimester prediction models for preterm preeclampsia in an Asian population.

    • Piya Chaemsaithong, Ritsuko K Pooh, Mingming Zheng, Runmei Ma, Noppadol Chaiyasit, Mayumi Tokunaka, Steven W Shaw, Suresh Seshadri, Mahesh Choolani, Tuangsit Wataganara, Yeo George S H GSH KK Women's and Children's Hospital, Singapore., Alan Wright, Wing Cheong Leung, Akihiko Sekizawa, Yali Hu, Katsuhiko Naruse, Shigeru Saito, Daljit Sahota, Tak Yeung Leung, and Liona C Poon.
    • Chinese University of Hong Kong, Hong Kong SAR, China.
    • Am. J. Obstet. Gynecol. 2019 Dec 1; 221 (6): 650.e1-650.e16.

    BackgroundThe administration of aspirin <16 weeks gestation to women who are at high risk for preeclampsia has been shown to reduce the rate of preterm preeclampsia by 65%. The traditional approach to identify such women who are at risk is based on risk factors from maternal characteristics, obstetrics, and medical history as recommended by the American College of Obstetricians and Gynecologists and the National Institute for Health and Care Excellence. An alternative approach to screening for preeclampsia has been developed by the Fetal Medicine Foundation. This approach allows the estimation of patient-specific risks of preeclampsia that requires delivery before a specified gestational age with the use of Bayes theorem-based model.ObjectiveThe purpose of this study was to examine the diagnostic accuracy of the Fetal Medicine Foundation Bayes theorem-based model, the American College of Obstetricians and Gynecologists, and the National Institute for Health and Care Excellence recommendations for the prediction of preterm preeclampsia at 11-13+6 weeks gestation in a large Asian population STUDY DESIGN: This was a prospective, nonintervention, multicenter study in 10,935 singleton pregnancies at 11-13+6 weeks gestation in 11 recruiting centers across 7 regions in Asia between December 2016 and June 2018. Maternal characteristics and medical, obstetric, and drug history were recorded. Mean arterial pressure and uterine artery pulsatility indices were measured according to standardized protocols. Maternal serum placental growth factor concentrations were measured by automated analyzers. The measured values of mean arterial pressure, uterine artery pulsatility index, and placental growth factor were converted into multiples of the median. The Fetal Medicine Foundation Bayes theorem-based model was used for the calculation of patient-specific risk of preeclampsia at <37 weeks gestation (preterm preeclampsia) and at any gestation (all preeclampsia) in each participant. The performance of screening for preterm preeclampsia and all preeclampsia by a combination of maternal factors, mean arterial pressure, uterine artery pulsatility index, and placental growth factor (triple test) was evaluated with the adjustment of aspirin use. We examined the predictive performance of the model by the use of receiver operating characteristic curve and calibration by measurements of calibration slope and calibration in the large. The detection rate of screening by the Fetal Medicine Foundation Bayes theorem-based model was compared with the model that was derived from the application of American College of Obstetricians and Gynecologists and National Institute for Health and Care Excellence recommendations.ResultsThere were 224 women (2.05%) who experienced preeclampsia, which included 73 cases (0.67%) of preterm preeclampsia. In pregnancies with preterm preeclampsia, the mean multiples of the median values of mean arterial pressure and uterine artery pulsatility index were significantly higher (mean arterial pressure, 1.099 vs 1.008 [P<.001]; uterine artery pulsatility index, 1.188 vs 1.063[P=.006]), and the mean placental growth factor multiples of the median was significantly lower (0.760 vs 1.100 [P<.001]) than in women without preeclampsia. The Fetal Medicine Foundation triple test achieved detection rates of 48.2%, 64.0%, 71.8%, and 75.8% at 5%, 10%, 15%, and 20% fixed false-positive rates, respectively, for the prediction of preterm preeclampsia. These were comparable with those of previously published data from the Fetal Medicine Foundation study. Screening that used the American College of Obstetricians and Gynecologists recommendations achieved detection rate of 54.6% at 20.4% false-positive rate. The detection rate with the use of National Institute for Health and Care Excellence guideline was 26.3% at 5.5% false-positive rate.ConclusionBased on a large number of women, this study has demonstrated that the Fetal Medicine Foundation Bayes theorem-based model is effective in the prediction of preterm preeclampsia in an Asian population and that this method of screening is superior to the approach recommended by American College of Obstetricians and Gynecologists and the National Institute for Health and Care Excellence. We have also shown that the Fetal Medicine Foundation prediction model can be implemented as part of routine prenatal care through the use of the existing infrastructure of routine prenatal care.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.