• Behav. Brain Res. · Jun 2015

    Somatosensory input to non-primary motor areas is enhanced during preparation of cued contraterlateral finger sequence movements.

    • Brown Matt J N MJ Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. and Staines W Richard WR Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. Electronic address: rstaines@uwater.
    • Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
    • Behav. Brain Res. 2015 Jun 1; 286: 166-74.

    AbstractFrontal N30 somatosensory evoked potentials (SEPs) represent early somatosensory input into non-primary motor areas. Importantly, modulations of frontal N30 SEPs can provide insight into the mechanisms involved in sensory processing for movement control. Enhancements of frontal N30 SEPs have been revealed during repetitive but not during the preparation of movements that are contralateral to median nerve (MN) stimulation (i.e. contralateral movements). Importantly, these enhancements during contralateral movements may be dependent on increased activity in several neural areas such as the primary motor cortex (M1), supplementary motor area (SMA) and basal ganglia (BG). Furthermore, research has also shown that patients with prefrontal lesions have enhanced early frontal SEPs (i.e. N28) at rest supporting a role of the prefrontal cortex in inhibitory modulation of early somatosensory input. The current study evaluated whether differential modulations of frontal N30 SEPs occurred during different time periods when individuals prepared and executed contralateral (right) finger sequences to attended vibrotactile (VibT) stimuli at the left index finger. SEPs were measured to median nerve (MN) stimuli elicited at the left wrist and MN stimuli were time-locked in four different periods relative to VibT onset (during pre-stimulus, early response preparation, late movement preparation and movement execution). Results revealed that frontal N30 SEPs were significantly enhanced when MN stimulation occurred in the late preparatory and/or early movement execution period (∼750 ms) after the attended VibT stimuli. This result supports that increases in frontal N30 amplitudes during contralateral movements are dependent on the complexity of preparing and executing finger sequences, which is associated with increased activity in several neural areas such as the non-primary motor areas, prefrontal cortex and BG. Furthermore, enhanced N30 SEPs during contralateral movement preparation and execution may be a necessary mechanism to decrease sensory gating to facilitate somatosensory processing in non-primary motor areas when there is a 'noisy' environment.Copyright © 2015 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.