• Environment international · Apr 2019

    Urinary lead in relation to combustion-derived air pollution in urban environments. A longitudinal study of an international panel.

    • Yang Bai, Annouschka Laenen, Vincent Haufroid, Tim S Nawrot, and Benoit Nemery.
    • Centre for Environment and Health, KU Leuven, Herestraat 49, O&N 1 box 706, 3000 Leuven, Belgium. Electronic address: yang.bai@kuleuven.be.
    • Environ Int. 2019 Apr 1; 125: 75-81.

    BackgroundUrinary lead (Pb) is generally considered to have limited use in biomonitoring environmental exposure to lead. Carbon load in airway macrophages (AM BC) is an internal marker to assess long-term exposure to combustion-derived aerosol particles. In urban environments, atmospheric Pb and black carbon may have common sources. We aimed to study the temporal change of urinary Pb (U-Pb) when exposure to outdoor air pollution changes, and the relationship between U-Pb and AM BC.MethodsA panel of 50 young healthy adults [mean (SD) 26.7 (5.2) years], including 17 long-term (>1 year) residents in Leuven, Belgium (BE), 15 and 18 newcomers (arrived <3 weeks) from low- and middle-income countries (LMIC) and high-income countries (HIC), respectively, underwent 8 repeated measurements at 6 weeks intervals. In urine spot samples obtained at 5 time points (T1, T2, T4, T6, T8), 24 trace elements were quantified by inductively coupled plasma-mass spectrometry. At each time point, AM BC was quantified as the median surface of black inclusions (in μm2) by means of image analysis of 25 macrophages obtained by induced sputum. Changes in urinary metal concentrations (with and without creatinine correction) and the relationship between U-Pb and AM BC were estimated using linear mixed models adjusted for covariates and potential confounders.ResultsOnly U-Pb differed between groups and exhibited significant time trends. Participants from the LMIC group had significantly higher initial U-Pb (1.18 μg/g creat) than the HIC group (0.44 μg/g creat) and BE group (0.45 μg/g creat). In the LMIC group, U-Pb decreased significantly with time by 0.061 μg/g creatinine per 30 days [95% confidence interval (CI): 0.034, 0.088]. U-Pb remained unchanged in the other two groups. An increase in AM BC of 1 μm2 was associated with an increase in U-Pb of 0.369 μg/g creat (95% CI: 0.145, 0.593).ConclusionThis panel study demonstrates that U-Pb may be a valid alternative to blood Pb for biomonitoring changes in exposure to lead, at least at group level. In addition, we identified a positive association between U-Pb and AM BC, a biomarker of exposure to traffic-related air pollution, suggesting the existence of common sources of Pb and black carbon in urban environments.Copyright © 2019 Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…