• J. Thorac. Cardiovasc. Surg. · Feb 2015

    Oxidant stress regulatory genetic variation in recipients and donors contributes to risk of primary graft dysfunction after lung transplantation.

    • Edward Cantu, Rupal J Shah, Wei Lin, Zhongyin J Daye, Joshua M Diamond, Yoshikazu Suzuki, John H Ellis, Catherine F Borders, Gerald A Andah, Ben Beduhn, Nuala J Meyer, Melanie Ruschefski, Richard Aplenc, Rui Feng, Jason D Christie, and Lung Transplant Outcomes Group Investigators.
    • Cardiovascular Surgery Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pa. Electronic address: edward.cantu@uphs.upenn.edu.
    • J. Thorac. Cardiovasc. Surg. 2015 Feb 1; 149 (2): 596602596-602.

    ObjectiveOxidant stress pathway activation during ischemia reperfusion injury may contribute to the development of primary graft dysfunction (PGD) after lung transplantation. We hypothesized that oxidant stress gene variation in recipients and donors is associated with PGD.MethodsDonors and recipients from the Lung Transplant Outcomes Group (LTOG) cohort were genotyped using the Illumina IBC chip filtered for oxidant stress pathway genes. Single nucleotide polymorphisms (SNPs) grouped into SNP sets based on haplotype blocks within 49 oxidant stress genes selected from gene ontology pathways and literature review were tested for PGD association using a sequencing kernel association test. Analyses were adjusted for clinical confounding variables and population stratification.ResultsThree hundred ninety-two donors and 1038 recipients met genetic quality control standards. Thirty percent of patients developed grade 3 PGD within 72 hours. Donor NADPH oxidase 3 (NOX3) was associated with PGD (P = .01) with 5 individual significant loci (P values between .006 and .03). In recipients, variation in glutathione peroxidase (GPX1) and NRF-2 (NFE2L2) was significantly associated with PGD (P = .01 for both). The GPX1 association included 3 individual loci (P values between .006 and .049) and the NFE2L2 association included 2 loci (P = .03 and .05). Significant epistatic effects influencing PGD susceptibility were evident between 3 different donor blocks of NOX3 and recipient NFE2L2 (P = .026, P = .017, and P = .031).ConclusionsOur study has prioritized GPX1, NOX3, and NFE2L2 genes for future research in PGD pathogenesis, and highlights a donor-recipient interaction of NOX3 and NFE2L2 that increases the risk of PGD.Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.