• Neuroradiology · Dec 2018

    Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.

    • Yikyung Kim, Hwan-Ho Cho, Sung Tae Kim, Hyunjin Park, Dohyun Nam, and Doo-Sik Kong.
    • Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea.
    • Neuroradiology. 2018 Dec 1; 60 (12): 1297-1305.

    PurposeTo determine the feasibility of using high dimensional computer-extracted features, known as radiomics features, in differentiating primary central nervous system lymphoma (PCNSL) from glioblastoma on multi-parametric MR imaging including diffusion-weighted imaging.MethodsRetrospective evaluation of data was approved by the local ethics committee and informed consent was waived. A total of 143 patients (two independent cohorts for discovery [n = 86; glioblastoma = 49, PCNSL = 37] and validation [n = 57; glioblastoma = 29, PCNSL = 28]) with newly diagnosed glioblastoma and PCNSL were subjected to radiomics analysis using the multi-parametric MRI (contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging). Radiomics analyses were performed for two types of regions of interest (ROI) covering contrast-enhancing tumor and whole (enhancing or non-enhancing) tumor plus peritumoral edema. A total of 127 radiomics features were calculated. Feature selection was performed to identify the most discriminating features for every MR image in the discovery cohort. The identified features were used to calculate radiomics scores, which were later used in logistic regression to distinguish between PCNSL and glioblastoma. The classification model was further tested on the independent validation cohort.ResultsFifteen features were selected as significant features in the discovery cohort. Using the identified features and calculated radiomics scores, the logistic regression-based classifier yielded an area under the curve (AUC) of 0.979, sensitivity of 0.938, and specificity of 0.944 in the discovery cohort to distinguish between glioblastoma and PCNSL. A similarly high rate of performance was observed in the validation cohort (AUC = 0.956).ConclusionsRadiomics features derived from multi-parametric MRI can be used to differentiate PCNSL from glioblastoma effectively.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.