• J. Comp. Neurol. · Jul 2009

    Pattern of long-term sensorimotor recovery following intrastriatal and--accumbens DA micrografts in a rat model of Parkinson's disease.

    • Gero Falkenstein, Christoph Rosenthal, Torsten Reum, Rudolf Morgenstern, Máté Döbrössy, and Guido Nikkhah.
    • Laboratory of Molecular Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Neurocenter, Albert-Ludwigs-University, Freiburg, Germany.
    • J. Comp. Neurol. 2009 Jul 1; 515 (1): 41-55.

    AbstractThe functional restorative capacity of fetal dopaminergic (DA) transplants is governed by a number of critical parameters including graft location, survival of DA neurons, and transplantation technique. In addition, there is an ongoing controversy whether "too much" or "too little" survival of DA neurons is responsible for the incomplete functional recovery observed in some transplanted Parkinson's disease (PD) patients. Here we investigated two implantation sites, the nucleus accumbens (NAc) and the caudate-putamen unit (CPU), and two different graft distributions within the CPU, i.e., two 0.75 microL deposits (CPU-2) versus six 0.25 microL deposits (CPU-6) in a rat model of PD. Grafts were derived from E14 rat ventral mesencephalon and the long-term functional outcome was evaluated with a wide range of complex-sensorimotor behavioral tests. The data show that forelimb stepping, balancing behavior, and skilled forelimb reaching behavior was more restored in CPU-6-grafted animals as compared to CPU-2 animals, although the number surviving dopaminergic neurons and dopamine release were similar in the two groups. Furthermore, a correlation analysis revealed a number of inverse relationships between the rate of DA neuron survival and sensorimotor performances, e.g., for skilled forelimb use. DA grafts placed into the NAc induced a partial recovery in drug-induced rotation tests but failed to restore any of the other sensorimotor behaviors tested. Taken together, these data have important implications both for a better understanding of the complex functional graft-host interactions as well as for the further optimization of clinical neural transplantation strategies in neurodegenerative diseases.Copyright 2009 Wiley-Liss, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.