• World Neurosurg · Jul 2021

    The MRI-directed implantable guide tube technique- Accuracy and applications in deep brain stimulation.

    • Arjun S Chandran, Nova B Thani, Omar K Bangash, and LindChristopher R PCRPDepartment of Neurosurgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; School of Medicine, University of Western Australia, Perth, Western Australia, Australia..
    • Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia. Electronic address: a.chandran@hotmail.com.
    • World Neurosurg. 2021 Jul 1; 151: e1016-e1023.

    ObjectiveThe magnetic resonance imaging (MRI)-directed implantable guide tube technique allows for direct targeting of deep brain structures without microelectrode recording or intraoperative clinical assessment. This study describes a 10-year institutional experience of this technique including nuances that enable performance of surgery using readily available equipment.MethodsEighty-seven patients underwent deep brain stimulation surgery using the guide tube technique for Parkinson disease (n = 59), essential tremor (n = 16), and dystonia (n = 12). Preoperative and intraoperative MRI was analyzed to measure lead accuracy, volume of pneumocephalus, and the ability to safely plan a trajectory for multiple electrode contacts.ResultsMean target error was measured to be 0.7 mm (95% confidence interval [CI] 0.6-0.8 mm) in the anteroposterior plane, 0.6 mm (95% CI 0.5-0.7 mm) in the mediolateral plane, and 0.8 mm (95% CI 0.7-0.9 mm) in the superoinferior plane. Net deviation (Euclidean error) from the planned target was 1.3 mm (95% CI 1.2-1.4 mm). Mean intracranial air volume per lead was 0.2 mL (95% CI 0.1-0.4 mL). In total, 52 patients had no intracranial air on postoperative imaging. In all patients, a safe trajectory could be planned to target for multiple electrode contacts without violating critical neural structures, the lateral ventricle, sulci, or cerebral blood vessels.ConclusionsThe MRI-directed implantable guide tube technique is a highly accurate, low-cost, reliable method for introducing deep brain electrodes. This technique reduces brain shift secondary to pneumocephalus and allows for whole trajectory planning of multiple electrode contacts.Copyright © 2021 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…