• Shock · Dec 2021

    Mechanistic Studies of Dnase I Activity: Impact of Heparin Variants and PAD4.

    • Sahar Sohrabipour, Valdirene S Muniz, Neha Sharma, Dhruva J Dwivedi, and Patricia C Liaw.
    • Department of Medical Sciences, McMaster University, Hamilton ON, Canada.
    • Shock. 2021 Dec 1; 56 (6): 975987975-987.

    BackgroundExcessive production of neutrophil extracellular traps (NETs) in sepsis contributes to vascular occlusion by acting as a scaffold and stimulus for thrombus formation. Removal of extracellular DNA, the major structural component of NETs, by DNase I may reduce host injury.Objectives(1) To determine how heparin variants (unfractionated heparin, enoxaparin, Vasoflux, and fondaparinux) affect DNase I activity, (2) to measure temporal changes in circulating DNA and DNase I in septic patients.MethodsDNA–histone complexes were treated with DNase I ± heparin variants and visualized via agarose gels. We compared the ability of DNase I ± heparin variants to digest NETs released by phorbol 12-myristate 13-acetate-stimulated neutrophils versus DNA–histone complexes released by necrotic HEK293 cells. Plasma DNA and DNase I levels were measured longitudinally in 76 septic patients.ResultsHeparin enhances DNase I-mediated digestion of DNA–histone complexes in a size-dependent manner that does not require the antithrombin-binding region. In contrast, DNase I alone was able to degrade the DNA–histone component of NETs presumably due to peptidylarginine deiminase 4 (PAD4)-mediated histone citrullination that weakens DNA–histone interactions. In purified systems, PAD4 treatment of DNA–histone complexes enhanced the ability of DNase I to degrade histone-bound DNA. In septic patients, endogenous DNase I levels remained persistently low over 28 days, and there were no significant correlations between DNA and DNase I levels.ConclusionHeparin enhances DNA-mediated digestion of DNA–histone complexes in a size-dependent manner that is independent of its anticoagulant properties. Citrullination of histones by PAD4 renders DNA–histone complexes susceptible to DNase I digestion. Endogenous DNase I levels are persistently decreased in septic patients, which supports the potential utility of DNase I as a therapy for sepsis.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.