• Biophysical journal · Feb 1978

    Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters.

    • J W Moore, R W Joyner, M H Brill, S D Waxman, and M Najar-Joa.
    • Biophys. J. 1978 Feb 1; 21 (2): 147-60.

    AbstractConduction of impulses in myelinated axons has been studied by a new method of computer simulation. The contributions of nodal and internodal characteristics and parameters were examined. Surprisingly, the conduction velocity, theta, was found to be quite insensitive to the nodal area or the exact description of its excitable processes. The conduction velocity also is relatively insensitive to the internodal length but much more sensitive to the myelin capacitance and axoplasm conductance. Qualitative change in theta with temperature depended on which temperature-sensitive parameters were included in the simulation.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.