• J Med Syst · Dec 2009

    Comparative Study

    A comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis using neural networks and artificial immune system.

    • Orhan Er, Cengiz Sertkaya, Feyzullah Temurtas, and A Cetin Tanrikulu.
    • Department of Electrical and Electronics Engineering, Sakarya University, 54187 Adapazari, Turkey.
    • J Med Syst. 2009 Dec 1; 33 (6): 485-92.

    AbstractMillions of people are diagnosed every year with a chest disease in the world. Chronic obstructive pulmonary and pneumonia diseases are two of the most important chest diseases. And these are very common illnesses in Turkey. In this paper, a comparative study on chronic obstructive pulmonary and pneumonia diseases diagnosis was realized by using neural networks and artificial immune systems. For this purpose, three different neural networks structures and one artificial immune system were used. Used neural network structures in this study were multilayer, probabilistic, and learning vector quantization neural networks. The results of the study were compared with the results of the pervious similar studies reported focusing on chronic obstructive pulmonary and pneumonia diseases diagnosis. The chronic obstructive pulmonary and pneumonia diseases dataset were prepared from a chest diseases hospital's database using patient's epicrisis reports.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.