-
- Christopher C Stahl, Sarah A Jung, Alexandra A Rosser, Aaron S Kraut, Benjamin H Schnapp, Mary Westergaard, Azita G Hamedani, Rebecca M Minter, and Jacob A Greenberg.
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Am. J. Surg. 2021 Feb 1; 221 (2): 369-375.
BackgroundEntrustable Professional Activities (EPAs) contain narrative 'entrustment roadmaps' designed to describe specific behaviors associated with different entrustment levels. However, these roadmaps were created using expert committee consensus, with little data available for guidance. Analysis of actual EPA assessment narrative comments using natural language processing may enhance our understanding of resident entrustment in actual practice.MethodsAll text comments associated with EPA microassessments at a single institution were combined. EPA-entrustment level pairs (e.g. Gallbladder Disease-Level 1) were identified as documents. Latent Dirichlet Allocation (LDA), a common machine learning algorithm, was used to identify latent topics in the documents associated with a single EPA. These topics were then reviewed for interpretability by human raters.ResultsOver 18 months, 1015 faculty EPA microassessments were collected from 64 faculty for 80 residents. LDA analysis identified topics that mapped 1:1 to EPA entrustment levels (Gammas >0.99). These LDA topics appeared to trend coherently with entrustment levels (words demonstrating high entrustment were consistently found in high entrustment topics, word demonstrating low entrustment were found in low entrustment topics).ConclusionsLDA is capable of identifying topics relevant to progressive surgical entrustment and autonomy in EPA comments. These topics provide insight into key behaviors that drive different level of resident autonomy and may allow for data-driven revision of EPA entrustment maps.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.