• Radiology · May 2016

    Review

    Natural Language Processing in Radiology: A Systematic Review.

    • Ewoud Pons, Loes M M Braun, M G Myriam Hunink, and Jan A Kors.
    • From the Departments of Radiology (E.P., L.M.M.B., M.G.M.H.) and Medical Informatics (J.A.K.), Erasmus Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
    • Radiology. 2016 May 1; 279 (2): 329-43.

    AbstractRadiological reporting has generated large quantities of digital content within the electronic health record, which is potentially a valuable source of information for improving clinical care and supporting research. Although radiology reports are stored for communication and documentation of diagnostic imaging, harnessing their potential requires efficient and automated information extraction: they exist mainly as free-text clinical narrative, from which it is a major challenge to obtain structured data. Natural language processing (NLP) provides techniques that aid the conversion of text into a structured representation, and thus enables computers to derive meaning from human (ie, natural language) input. Used on radiology reports, NLP techniques enable automatic identification and extraction of information. By exploring the various purposes for their use, this review examines how radiology benefits from NLP. A systematic literature search identified 67 relevant publications describing NLP methods that support practical applications in radiology. This review takes a close look at the individual studies in terms of tasks (ie, the extracted information), the NLP methodology and tools used, and their application purpose and performance results. Additionally, limitations, future challenges, and requirements for advancing NLP in radiology will be discussed.(©) RSNA, 2016 Online supplemental material is available for this article.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…