-
- Qing-Qing Zhou, Wen Tang, Jiashuo Wang, Zhang-Chun Hu, Zi-Yi Xia, Rongguo Zhang, Xinyi Fan, Wei Yong, Xindao Yin, Bing Zhang, and Hong Zhang.
- Department of Radiology, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168, gushan Road, Nanjing, 211100, Jiangsu Province, China.
- Eur Radiol. 2021 Jun 1; 31 (6): 3815-3825.
ObjectiveTo develop a convolutional neural network (CNN) model for the automatic detection and classification of rib fractures in actual clinical practice based on cross-modal data (clinical information and CT images).MaterialsIn this retrospective study, CT images and clinical information (age, sex and medical history) from 1020 participants were collected and divided into a single-centre training set (n = 760; age: 55.8 ± 13.4 years; men: 500), a single-centre testing set (n = 134; age: 53.1 ± 14.3 years; men: 90), and two independent multicentre testing sets from two different hospitals (n = 62, age: 57.97 ± 11.88, men: 41; n = 64, age: 57.40 ± 13.36, men: 35). A Faster Region-based CNN (Faster R-CNN) model was applied to integrate CT images and clinical information. Then, a result merging technique was used to convert 2D inferences into 3D lesion results. The diagnostic performance was assessed on the basis of the receiver operating characteristic (ROC) curve, free-response ROC (fROC) curve, precision, recall (sensitivity), F1-score, and diagnosis time. The classification performance was evaluated in terms of the area under the ROC curve (AUC), sensitivity, and specificity.ResultsThe CNN model showed improved performance on fresh, healing, and old fractures and yielded good classification performance for all three categories when both clinical information and CT images were used compared to the use of CT images alone. Compared with experienced radiologists, the CNN model achieved higher sensitivity (mean sensitivity: 0.95 > 0.77, 0.89 > 0.61 and 0.80 > 0.55), comparable precision (mean precision: 0.91 > 0.87, 0.84 > 0.77, and 0.95 > 0.70), and a shorter diagnosis time (average reduction of 126.15 s).ConclusionsA CNN model combining CT images and clinical information can automatically detect and classify rib fractures with good performance and feasibility in actual clinical practice.Key Points• The developed convolutional neural network (CNN) performed better in fresh, healing, and old fractures and yielded a good classification performance in three categories, if both (clinical information and CT images) were used compared to CT images alone. • The CNN model had a higher sensitivity and matched precision in three categories than experienced radiologists with a shorter diagnosis time in actual clinical practice.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.