• J Epidemiol Community Health · Nov 2017

    A glossary for big data in population and public health: discussion and commentary on terminology and research methods.

    • Daniel Fuller, Richard Buote, and Kevin Stanley.
    • School of Human Kinetics and Recreation, Memorial University of Newfoundland, Saint John's, Canada.
    • J Epidemiol Community Health. 2017 Nov 1; 71 (11): 1113-1117.

    AbstractThe volume and velocity of data are growing rapidly and big data analytics are being applied to these data in many fields. Population and public health researchers may be unfamiliar with the terminology and statistical methods used in big data. This creates a barrier to the application of big data analytics. The purpose of this glossary is to define terms used in big data and big data analytics and to contextualise these terms. We define the five Vs of big data and provide definitions and distinctions for data mining, machine learning and deep learning, among other terms. We provide key distinctions between big data and statistical analysis methods applied to big data. We contextualise the glossary by providing examples where big data analysis methods have been applied to population and public health research problems and provide brief guidance on how to learn big data analysis methods.© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…