-
TheScientificWorldJournal · Jan 2013
Nonlinear analysis of electrocardiography signals for atrial fibrillation.
- Necmettin Sezgin.
- Department of Electrical and Electronics Engineering, Faculty of Architecture and Engineering, Batman University, 72060 Batman, Turkey. necmettinsezgin@gmail.com
- ScientificWorldJournal. 2013 Jan 1; 2013: 509784.
AbstractThis paper aims to analyze the electrocardiography (ECG) signals for patient with atrial fibrillation (AF) by using bispectrum and extreme learning machine (ELM). AF is the most common irregular heart beat disease which may cause many cardiac diseases as well. Bispectral analysis was used to extract the nonlinear information in the ECG signals. The bispectral features of each ECG episode were determined and fed to the ELM classifier. The classification accuracy of ELM to distinguish nonterminating, terminating AF, and terminating immediately AF was 96.25%. In this study, the normal ECG signal was also compared with AF ECG signal due to the nonlinearity which was determined by bispectrum. The classification result of ELM was 99.15% to distinguish AF ECGs from normal ECGs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.