-
Musculoskelet Sci Pract · Feb 2019
ReviewArtificial intelligence and machine learning | applications in musculoskeletal physiotherapy.
- Christopher Tack.
- Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, Great Maze Pond, SE1 9RT, London, UK. Electronic address: Christopher.tack@gmail.com.
- Musculoskelet Sci Pract. 2019 Feb 1; 39: 164-169.
IntroductionArtificial intelligence (AI) is a field of mathematical engineering which has potential to enhance healthcare through new care delivery strategies, informed decision making and facilitation of patient engagement. Machine learning (ML) is a form of narrow artificial intelligence which can be used to automate decision making and make predictions based upon patient data.PurposeThis review outlines key applications of supervised and unsupervised machine learning in musculoskeletal medicine; such as diagnostic imaging, patient measurement data, and clinical decision support. The current literature base is examined to identify areas where ML performs equal to or more accurately than human levels.ImplicationsPotential is apparent for intelligent machines to enhance various areas of physiotherapy practice through automization of tasks which involve data analysis, classification and prediction. Changes to service provision through applications of ML, should encourage physiotherapists to increase their awareness of and experiences with emerging technologies. Data literacy should be a component of professional development plans to assist physiotherapists in the application of ML and the preparation of information technology systems to use these techniques.Copyright © 2018 Elsevier Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.