• IEEE Trans Biomed Eng · Feb 2004

    Predicting auditory tone-in-noise detection performance: the effects of neural variability.

    • Lisa G Huettel and Leslie M Collins.
    • Department of Electrical and Computer Engineering, Box 90291, Duke University, Durham, NC 27708, USA. lisa.huettel@duke.edu
    • IEEE Trans Biomed Eng. 2004 Feb 1; 51 (2): 282-93.

    AbstractCollecting and analyzing psychophysical data is a fundamental mechanism for the study of auditory processing. However, because this approach relies on human listening experiments, it can be costly in terms of time and money spent gathering the data. The development of a theoretical, model-based procedure capable of accurately predicting psychophysical behavior could alleviate these issues by enabling researchers to rapidly evaluate hypotheses prior to conducting experiments. This approach may also provide additional insight into auditory processing by establishing a link between psychophysical behavior and physiology. Signal detection theory has previously been combined with an auditory model to generate theoretical predictions of psychophysical behavior. Commonly, the ideal processor outperforms human subjects. In order for this model-based technique to enhance the study of auditory processing, discrepancies must be eliminated or explained. In this paper, we investigate the possibility that neural variability, which results from the randomness inherent in auditory nerve fiber responses, may explain some of the previously observed discrepancies. In addition, we study the impact of combining information across nerve fibers and investigate several models of multiple-fiber signal processing. Our findings suggest that neural variability can account for much, but not all, of the discrepancy between theoretical and experimental data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…