• Pain Med · Apr 2022

    Spine adjusting instrument (Impulse®) attenuates nociception and modulates oxidative stress markers in the spinal cord and sciatic nerve of a rat model of neuropathic pain.

    • Francielle B O da Silva, Maria do Carmo Q Santos, da SilvaThaisla Cristiane BorellaTCBLaboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Daniel Facchini, Angela Kolberg, Rodrigo R Barros, SilveiraElza M SEMSLaboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Adarly Kroth, Felipe C K Duarte, Jakson M Vassoler, Carolina Kolberg, and Wania A Partata.
    • Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
    • Pain Med. 2022 Apr 8; 23 (4): 761-773.

    ObjectiveOxidative stress plays an important role in neuropathic pain (NP). Spinal manipulative therapy (SMT) can exert beneficial effects on pain outcomes in humans and in animal models. SMT can also modulate oxidative stress markers in both humans and animals. We aimed to determine the effect of Impulse®-assisted SMT (ISMT) on nociception and oxidative stress biomarkers in the spinal cords and sciatic nerves of rats with NP.MethodsNP was induced by chronic constriction injury (CCI) of the sciatic nerve. Animals were randomly assigned to naive, sham (rats with sciatic nerve exposure but without ligatures), or CCI, with and without ISMT. ISMT was applied onto the skin area corresponding to the spinous process of L4-L5, three times per week for 2 weeks. Mechanical threshold, latency to paw withdrawal in response to thermal stimulus, and oxidative stress biomarkers in the spinal cord and sciatic nerve were the main outcomes evaluated.ResultsISMT significantly increased mechanical threshold and withdrawal latency after CCI. In the spinal cord, ISMT prevented the increase of pro-oxidative superoxide anion generation and hydrogen peroxide levels. Lipid hydroperoxide levels both in the spinal cord and in the sciatic nerve were attenuated by ISMT. Total antioxidant capacity increased in the spinal cords and sciatic nerves of CCI rats with and without ISMT. CCI and ISMT did not significantly change the total thiol content of the spinal cord.ConclusionsOur findings suggest that reduced oxidative stress in the spinal cord and/or nerve may be an important mechanism underlying a therapeutic effect of SMT to manage NP nonpharmacologically.© The Author(s) 2021. Published by Oxford University Press on behalf of the American Academy of Pain Medicine.All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.