• Proc Inst Mech Eng H · Nov 2018

    Prediction of in vivo lower cervical spinal loading using musculoskeletal multi-body dynamics model during the head flexion/extension, lateral bending and axial rotation.

    • Hao Diao, Hua Xin, and Zhongmin Jin.
    • 1 State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.
    • Proc Inst Mech Eng H. 2018 Nov 1; 232 (11): 1071-1082.

    AbstractCervical spine diseases lead to a heavy economic burden to the individuals and societies. Moreover, frequent post-operative complications mean a higher risk of neck pain and revision. At present, controversy still exists for the etiology of spinal diseases and their associated complications. Knowledge of in vivo cervical spinal loading pattern is proposed to be the key to answer these questions. However, direct acquisition of in vivo cervical spinal loading remains challenging. In this study, a previously developed cervical spine musculoskeletal multi-body dynamics model was utilized for spinal loading prediction. The in vivo dynamic segmental contributions to head motion and the out-of-plane coupled motion were both taken into account. First, model validation and sensitivity analysis of different segmental contributions to head motion were performed. For model validation, the predicted intervertebral disk compressive forces were converted into the intradiskal pressures and compared with the published experimental measurements. Significant correlations were found between the predicted values and the experimental results. Thus, the reliability and capability of the cervical spine model was ensured. Meanwhile, the sensitivity analysis indicated that cervical spinal loading is sensitive to different segmental contributions to head motion. Second, the compressive, shear and facet joint forces at C3-C6 disk levels were predicted, during the head flexion/extension, lateral bending and axial rotation. Under the head flexion/extension movement, asymmetric loading patterns of the intervertebral disk were obtained. In comparison, symmetrical typed loading patterns were found for the head lateral bending and axial rotation movements. However, the shear forces were dramatically increased during the head excessive extension and lateral bending. Besides, a nonlinear correlation was seen between the facet joint force and the angular displacement. In conclusion, dynamic cervical spinal loading was both intervertebral disk angle-dependent and level-dependent. Cervical spine musculoskeletal multi-body dynamics model provides an attempt to comprehend the in vivo biomechanical surrounding of the human head-neck system.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.