-
Frontiers in immunology · Jan 2020
Comparative StudyAn RNA-seq Based Machine Learning Approach Identifies Latent Tuberculosis Patients With an Active Tuberculosis Profile.
- Olivia Estévez, Luis Anibarro, Elina Garet, Ángeles Pallares, Laura Barcia, Laura Calviño, Cremildo Maueia, Tufária Mussá, Florentino Fdez-Riverola, Daniel Glez-Peña, Miguel Reboiro-Jato, Hugo López-Fernández, Nuno A Fonseca, Rajko Reljic, and África González-Fernández.
- CINBIO, Universidade de Vigo, Immunology Group, Campus Universitario Lagoas-Marcosende, Vigo, Spain.
- Front Immunol. 2020 Jan 1; 11: 1470.
AbstractA better understanding of the response against Tuberculosis (TB) infection is required to accurately identify the individuals with an active or a latent TB infection (LTBI) and also those LTBI patients at higher risk of developing active TB. In this work, we have used the information obtained from studying the gene expression profile of active TB patients and their infected -LTBI- or uninfected -NoTBI- contacts, recruited in Spain and Mozambique, to build a class-prediction model that identifies individuals with a TB infection profile. Following this approach, we have identified several genes and metabolic pathways that provide important information of the immune mechanisms triggered against TB infection. As a novelty of our work, a combination of this class-prediction model and the direct measurement of different immunological parameters, was used to identify a subset of LTBI contacts (called TB-like) whose transcriptional and immunological profiles are suggestive of infection with a higher probability of developing active TB. Validation of this novel approach to identifying LTBI individuals with the highest risk of active TB disease merits further longitudinal studies on larger cohorts in TB endemic areas.Copyright © 2020 Estévez, Anibarro, Garet, Pallares, Barcia, Calviño, Maueia, Mussá, Fdez-Riverola, Glez-Peña, Reboiro-Jato, López-Fernández, Fonseca, Reljic and González-Fernández.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.