• The Journal of physiology · Mar 2020

    Randomized Controlled Trial

    High-definition transcranial direct current stimulation dissociates fronto-visual theta lateralization during visual selective attention.

    • Rachel K Spooner, Jacob A Eastman, Michael T Rezich, and Tony W Wilson.
    • Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
    • J. Physiol. (Lond.). 2020 Mar 1; 598 (5): 987-998.

    Key PointsVisual attention involves discrete multispectral oscillatory responses in visual and 'higher-order' prefrontal cortices. Prefrontal cortex laterality effects during visual selective attention are poorly characterized. High-definition transcranial direct current stimulation dynamically modulated right-lateralized fronto-visual theta oscillations compared to those observed in left fronto-visual pathways. Increased connectivity in right fronto-visual networks after stimulation of the left dorsolateral prefrontal cortex resulted in faster task performance in the context of distractors. Our findings show clear laterality effects in theta oscillatory activity along prefrontal-visual cortical pathways during visual selective attention.AbstractStudies of visual attention have implicated oscillatory activity in the recognition, protection and temporal organization of attended representations in visual cortices. These studies have also shown that higher-order regions such as the prefrontal cortex are critical to attentional processing, but far less is understood regarding prefrontal laterality differences in attention processing. To examine this, we selectively applied high-definition transcranial direct current stimulation (HD-tDCS) to the left or right dorsolateral prefrontal cortex (DLPFC). We predicted that HD-tDCS of the left versus right prefrontal cortex would differentially modulate performance on a visual selective attention task, and alter the underlying oscillatory network dynamics. Our randomized crossover design included 27 healthy adults that underwent three separate sessions of HD-tDCS (sham, left DLPFC and right DLPFC) for 20 min. Following stimulation, participants completed an attention protocol during magnetoencephalography. The resulting oscillatory dynamics were imaged using beamforming, and peak task-related neural activity was subjected to dynamic functional connectivity analyses to evaluate the impact of stimulation site (i.e. left and right DLPFC) on neural interactions. Our results indicated that HD-tDCS over the left DLPFC differentially modulated right fronto-visual functional connectivity within the theta band compared to HD-tDCS of the right DLPFC and further, specifically modulated the oscillatory response for detecting targets among an array of distractors. Importantly, these findings provide network-specific insight into the complex oscillatory mechanisms serving visual selective attention.© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.