-
- Hourmazd Haghbayan, Amélie Boutin, Mathieu Laflamme, François Lauzier, Michèle Shemilt, Lynne Moore, Ryan Zarychanski, Dean Fergusson, and Alexis F Turgeon.
- CHU de Québec-Université Laval Research Center, Population Health and Optimal Health Practices Research Unit (Trauma-Emergency-Critical Care Medicine), Université Laval, Québec, QC, Canada. hourmazd.haghbayan.1@ulaval.ca.
- Syst Rev. 2016 Jan 19; 5: 10.
BackgroundTraumatic brain injury (TBI) is a devastating condition with significant long-term mortality and morbidity. Despite current need for objective indicators to guide initial decision-making, few reliable acute phase prognostic factors have been identified. Early magnetic resonance imaging (MRI) has been investigated as a prognostic tool, but uncertainty remains in both its discriminative predictive value and which acute phase lesion patterns correlate with long-term outcome.MethodsWe will conduct a systematic review of observational cohort studies and randomized controlled trials of adult moderate or severe TBI patients who underwent MRI in the acute phase after trauma. A high sensitivity search strategy will be employed in MEDLINE, EMBASE, BIOSIS, and Cochrane CENTRAL to identify citations. Two reviewers will independently screen all identified references for eligibility and extract data into a standardized form. Data will be collected on study design, baseline demographics, trauma characteristics, magnetic resonance (MR) technical specifications, lesion patterns, and outcomes as related to acute MRI imaging. If meta-analysis is possible, quantitative data for each outcome will be pooled per type of lesion pattern using random effects models and expressed as Mantel-Haenszel relative risks in order to determine the prognostic value of lesions detected on acute MRI and their strength as discriminatory predictors of long-term outcome. Statistical heterogeneity will be evaluated with the I (2) statistics, and risk of bias and reporting quality will be assessed with standardized scales. Subgroup analyses are planned as a function of TBI severity, MRI-timing post-TBI, MRI field strength, MRI sequence, timing of outcome assessment, and risk of bias.DiscussionWe expect significant clinical heterogeneity, as eligible studies will likely encompass different periods in evolving MRI technology in addition to significant variability of image sequence protocols and timing of acquisition between centers. Based on existing studies in TBI, we expect lesions detected in the brainstem to be of significant predictive value as MRI is particularly sensitive for imaging the brain's posterior fossa. Our systematic review will allow clinicians to more accurately interpret MRI in the context of determining prognosis for moderate and severe TBI patients and inform researchers in this domain to improve the methodology of future studies.Systematic Review RegistrationProspero CRD42015017074.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.