• J. Clin. Gastroenterol. · Nov 2016

    Defining a Patient Population With Cirrhosis: An Automated Algorithm With Natural Language Processing.

    • Edward K Chang, Christine Y Yu, Robin Clarke, Andrew Hackbarth, Timothy Sanders, Eric Esrailian, Daniel W Hommes, and Bruce A Runyon.
    • Divisions of *Digestive Diseases †General Internal Medicine, David Geffen School of Medicine at UCLA ‡UCLA Office of Health Informatics & Analytics, UCLA Health, Los Angeles, CA.
    • J. Clin. Gastroenterol. 2016 Nov 1; 50 (10): 889-894.

    ObjectivesThe objective of this study was to use natural language processing (NLP) as a supplement to International Classification of Diseases, Ninth Revision (ICD-9) and laboratory values in an automated algorithm to better define and risk-stratify patients with cirrhosis.BackgroundIdentification of patients with cirrhosis by manual data collection is time-intensive and laborious, whereas using ICD-9 codes can be inaccurate. NLP, a novel computerized approach to analyzing electronic free text, has been used to automatically identify patient cohorts with gastrointestinal pathologies such as inflammatory bowel disease. This methodology has not yet been used in cirrhosis.Study DesignThis retrospective cohort study was conducted at the University of California, Los Angeles Health, an academic medical center. A total of 5343 University of California, Los Angeles primary care patients with ICD-9 codes for chronic liver disease were identified during March 2013 to January 2015. An algorithm incorporating NLP of radiology reports, ICD-9 codes, and laboratory data determined whether these patients had cirrhosis. Of the 5343 patients, 168 patient charts were manually reviewed at random as a gold standard comparison. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the algorithm and each of its steps were calculated.ResultsThe algorithm's PPV, NPV, sensitivity, and specificity were 91.78%, 96.84%, 95.71%, and 93.88%, respectively. The NLP portion was the most important component of the algorithm with PPV, NPV, sensitivity, and specificity of 98.44%, 93.27%, 90.00%, and 98.98%, respectively.ConclusionsNLP is a powerful tool that can be combined with administrative and laboratory data to identify patients with cirrhosis within a population.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…