• J. Thorac. Cardiovasc. Surg. · Aug 1994

    Nucleoside trapping during reperfusion prevents ventricular dysfunction, "stunning," in absence of adenosine. Possible separation between ischemic and reperfusion injury.

    • A S Abd-Elfattah, M E Jessen, and A S Wechsler.
    • Department of Surgery, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0532.
    • J. Thorac. Cardiovasc. Surg. 1994 Aug 1; 108 (2): 269-78.

    AbstractA previous study has shown that endogenous adenosine trapping during ischemia (by blocking adenine nucleoside transport and inhibiting adenosine breakdown) prevents myocardial stunning. In this study, we tested the hypothesis that delay of administration of inhibitors until reperfusion would similarly prevent myocardial stunning in the absence of entrapped adenosine. In both studies, a selective nucleoside transport blocker, p-nitrobenzyl-thioinosine, was used in combination with a potent adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine, to entrap adenosine (preischemic treatment) or inosine (postischemic treatment) in an in vivo canine model of reversible global ischemia. Twenty-five anesthetized adult dogs were instrumented (by sonomicrometry) to monitor left ventricular performance from the relationship between stroke work and end-diastolic length as a sensitive and load-independent index of contractility. Hearts of animals supported by cardiopulmonary bypass were subjected to 30 minutes of normothermic global ischemia and 60 minutes of reperfusion. Saline solution containing the pharmacologic agents were infused into the bypass circuit before ischemia (group 1) or during reperfusion (group 2). Control group (group 3) received saline before and after ischemia. Myocardial biopsy specimens were obtained before, during, and after ischemia, and levels of adenine nucleotides, nucleosides, oxypurines, and the oxidized form of nicotinamide-adenine dinucleotide were determined. Left ventricular contractility fully recovered within 30 minutes of reperfusion in the groups treated with erythro-9-(2-hydroxy-3-nonyl)adenine and p-nitrobenzyl-thioinosine (p < 0.05 versus control group). Myocardial adenosine triphosphate was depleted by 50% in all groups at the end of ischemia. Adenosine triphosphate recovered during reperfusion only in the group that was treated with inhibitors before ischemia (group 1). At the end of ischemia, adenosine levels were low (< 10% of total nucleosides) in the control group (group 3) and in the group treated only after ischemia (group 2). A high level of adenosine (> 90% of total nucleosides) was present in group 1. We infer that selective pharmacologic blockade of nucleoside transport, only after ischemic injury, accelerated functional recovery during reperfusion, even without trapping of endogenous adenosine during ischemia and without adenosine triphosphate recovery during reperfusion. Recovery of myocardial adenosine triphosphate required preischemic treatment and adenosine entrapment during ischemia and reperfusion. Therefore, nucleoside trapping may be used to prevent reperfusion-mediated injury after reversible ischemic injury.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.