• Zhonghua Shao Shang Za Zhi · Nov 2020

    [Effect and mechanism of astaxanthin on acute kidney injury in rats with full-thickness burns].

    • M R Yu, S X Guo, R H Jin, C G You, X G Wang, and C M Han.
    • Clinical Research Center, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
    • Zhonghua Shao Shang Za Zhi. 2020 Nov 20; 36 (11): 1050-1059.

    AbstractObjective: To explore the effect and mechanism of astaxanthin on acute kidney injury in rats with full-thickness burns. Methods: Forty-eight male Sprague Dawley rats of 8 to 10 weeks were divided into sham injury group, simple burn group, burn+ vehicle group, burn+ low-dose astaxanthin group, burn+ medium-dose astaxanthin group, and burn+ high-dose astaxanthin group according to the random number table, with 8 rats in each group. The back skin of rats in sham injury group were immersed in warm water of 20 ℃ for 15 s to simulate burn injury, and the back skin of rats in the other 5 groups were immersed in boiled water of 100 ℃ for 15 s to inflict full-thickness burn of 30% total body surface area. Fluid resuscitation was performed in rats in the 5 groups except of sham injury group immediately and 6 h after injury. At 30 min after injury, the rats in sham injury group and simple burn group were injected with 1 mL/kg normal saline via tail vein, rats in burn+ vehicle group were injected with 1 mL/kg astaxanthin solvent via tail vein, and rats in burn+ low-dose astaxanthin group, burn+ medium-dose astaxanthin group, and burn+ high-dose astaxanthin group were respectively injected with 5, 10, 20 mg/kg astaxanthin solution of 5, 10, 20 mg/mL via tail vein. The renal tissue was collected at post injury hour (PIH) 48, and hematoxylin eosin staining was used for histopathological observation and renal tubular injury score. At PIH 48, the venous blood was collected for detecting serum creatinine level through blood biochemical analyzer, and blood urea nitrogen (BUN) level was detected by enzyme-linked immunosorbent assay. The renal tissue was collected to detect the mRNA expressions of myeloperoxidase (MPO), interleukin-1β (IL-1β), and IL-6 by real-time fluorescent quantitative reverse transcription polymerase chain reaction method, and the protein expressions of Toll like receptor 4 (TLR4), phosphorylated nuclear factor kappa B (p-NF-кB) p65, and heme oxygenase 1 (HO-1) were detected by Western blotting. Besides, the expression of HO-1 in renal tissue was detected by immunofluorescence method. Data were statistically analyzed with Kruskal-Wallis H test, Dunn-Sidák correction, one-way analysis of variance, and Bonferroni method. Results: (1) At PIH 48, there were no inflammatory cell infiltrating and degeneration or necrosis of cells in renal tissue of rats in sham injury group, and the structure of renal tubules was intact. The renal tubules of burn rats in each group showed injury manifestation of separation between epithelial cell and basement membrane, and vacuole cells and lysate protein aggregation. The injury degree of renal tissue of rats in burn+ high-dose astaxanthin group was obviously decreased compared with that in simple burn group. (2) At PIH 48, compared with that of sham injury group, the renal tubular damage scores of rats in simple burn group, burn+ vehicle group, burn+ low-dose astaxanthin group, and burn+ medium-dose astaxanthin group were significantly increased (P<0.05 or P<0.01). Compared with those of simple burn group and burn+ vehicle group, the renal tubular damage scores of rats in burn+ medium-dose astaxanthin group and burn+ high-dose astaxanthin group were significantly decreased (P<0.05 or P<0.01). Compared with that of burn+ low-dose astaxanthin group, the renal tubular damage score of rats in burn+ high-dose astaxanthin group was significantly decreased (P<0.01). (3) At PIH 48, the level of serum creatinine of rats in sham injury group was (2.42±0.06) mg/L, which was significantly lower than (6.11±0.11), (6.48±0.08), (5.79±0.09), (4.03±0.12) mg/L of simple burn group, burn+ vehicle group, burn+ low-dose astaxanthin group, and burn+ medium-dose astaxanthin group (P<0.05 or P<0.01). The level of BUN of rats was (21.9±1.3) mmol/L in sham injury group, significantly lower than (32.1±7.4) mmol/L of simple burn group and (30.2±4.8) mmol/L of burn+ vehicle group (P<0.05 or P<0.01). At PIH 48, compared with those of simple burn group and burn+ vehicle group, the levels of serum creatinine and BUN of (16.0±2.9) mmol/L in burn+ medium-dose astaxanthin group, serum creatinine of (3.02±0.08) mg/L and BUN of (14.5±2.9) mmol/L in burn+ high-dose astaxanthin group, and serum creatinine of (22.8±5.5) mmol/L of rats in burn+ low-dose astaxanthin group were significantly decreased (P<0.05 or P<0.01). At PIH 48, compared with those of burn+ low-dose astaxanthin group, the levels of serum creatinine and BUN of burn+ high-dose astaxanthin group and serum creatinine of burn+ medium-dose group were obviously decreased (P<0.05 or P< 0.01). (4) At PIH 48, compared with those of sham injury group, the mRNA expressions of MPO, IL-1β, and IL-6 in renal tissue of rats in simple burn group, burn+ vehicle group, burn+ low-dose astaxanthin group, and burn+ medium dose astaxanthin group, and the mRNA expressions of IL-1β and IL-6 in renal tissue of rats in burn+ high-dose astaxanthin group were obviously increased (P<0.01). Compared with those of simple burn group and burn+ vehicle group, the mRNA expressions of MPO, IL-1β, and IL-6 in renal tissue of rats were significantly decreased in burn+ low-dose astaxanthin group, burn+ medium-dose astaxanthin group, and burn+ high-dose astaxanthin group (P<0.01). Compared with those of burn+ low-dose astaxanthin group, the mRNA expressions of MPO, IL-1β, and IL-6 in renal tissue of rats were significantly decreased in burn+ medium-dose astaxanthin group and burn+ high-dose astaxanthin group (P<0.01). The mRNA expressions of MPO, IL-1β, and IL-6 in renal tissue of rats in burn+ high-dose astaxanthin group were significantly decreased compared with those of burn+ medium-dose astaxanthin group (P<0.01). (5) At PIH 48 h, compared with those of sham injury group, the protein expressions of TLR4 and p-NF-кB p65 in renal tissue of rats in simple burn group, burn+ vehicle group, burn+ low-dose astaxanthin group, and burn+ high-dose astaxanthin group were obviously increased (P<0.01). Compared with those of simple burn group, the protein expressions of TLR4 and p-NF-кB p65 in renal tissue of rats in burn+ low-dose astaxanthin group, burn+ medium dose astaxanthin group, and burn+ high-dose astaxanthin group were significantly decreased (P<0.01). (6) The results of Western blotting combined with immunofluorescence method showed that compared with that of sham injury group, the protein expression of HO-1 in renal tissue of rats in burn+ vehicle group, burn+ low-dose astaxanthin group, burn+ medium-dose astaxanthin group, and burn+ high-dose astaxanthin group were significantly increased at PIH 48 (P<0.01), and the protein expression of HO-1 in renal tissue of rats in burn+ medium-dose astaxanthin group and burn+ high-dose astaxanthin group was significantly increased compared with that of simple burn group (P<0.01). Conclusions: Astaxanthin can attenuate the structural damage and functional decline of renal tissue and regulate the release of injury-related inflammatory factors, thus to protect the rats from acute kidney injury after burn. The HO-1/TLR4/NF-кB signaling pathway is the main regulatory mechanism of astaxanthin to achieve anti-inflammation-based renoprotection.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.