• Resuscitation · Aug 2021

    Shock decision algorithm for use during load distributing band cardiopulmonary resuscitation.

    • I Isasi, U Irusta, E Aramendi, J A Olsen, and L Wik.
    • Communications Engineering Department, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo S/N, 48013 Bilbao, Bizkaia, Spain.
    • Resuscitation. 2021 Aug 1; 165: 93-100.

    AimChest compressions delivered by a load distributing band (LDB) induce artefacts in the electrocardiogram. These artefacts alter shock decisions in defibrillators. The aim of this study was to demonstrate the first reliable shock decision algorithm during LDB compressions.MethodsThe study dataset comprised 5813 electrocardiogram segments from 896 cardiac arrest patients during LDB compressions. Electrocardiogram segments were annotated by consensus as shockable (1154, 303 patients) or nonshockable (4659, 841 patients). Segments during asystole were used to characterize the LDB artefact and to compare its characteristics to those of manual artefacts from other datasets. LDB artefacts were removed using adaptive filters. A machine learning algorithm was designed for the shock decision after filtering, and its performance was compared to that of a commercial defibrillator's algorithm.ResultsMedian (90% confidence interval) compression frequencies were lower and more stable for the LDB than for the manual artefact, 80 min-1 (79.9-82.9) vs. 104.4 min-1 (48.5-114.0). The amplitude and waveform regularity (Pearson's correlation coefficient) were larger for the LDB artefact, with 5.5 mV (0.8-23.4) vs. 0.5 mV (0.1-2.2) (p < 0.001) and 0.99 (0.78-1.0) vs. 0.88 (0.55-0.98) (p < 0.001). The shock decision accuracy was significantly higher for the machine learning algorithm than for the defibrillator algorithm, with sensitivity/specificity pairs of 92.1/96.8% (machine learning) vs. 91.4/87.1% (defibrillator) (p < 0.001).ConclusionCompared to other cardiopulmonary resuscitation artefacts, removing the LDB artefact was challenging due to larger amplitudes and lower compression frequencies. The machine learning algorithm achieved clinically reliable shock decisions during LDB compressions.Copyright © 2021 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.