-
- Emrah Gecili, Assem Ziady, and Rhonda D Szczesniak.
- Division of Biostatistics & Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America.
- Plos One. 2021 Jan 1; 16 (1): e0244173.
AbstractThe novel coronavirus (COVID-19) is an emergent disease that initially had no historical data to guide scientists on predicting/ forecasting its global or national impact over time. The ability to predict the progress of this pandemic has been crucial for decision making aimed at fighting this pandemic and controlling its spread. In this work we considered four different statistical/time series models that are readily available from the 'forecast' package in R. We performed novel applications with these models, forecasting the number of infected cases (confirmed cases and similarly the number of deaths and recovery) along with the corresponding 90% prediction interval to estimate uncertainty around pointwise forecasts. Since the future may not repeat the past for this pandemic, no prediction model is certain. However, any prediction tool with acceptable prediction performance (or prediction error) could still be very useful for public-health planning to handle spread of the pandemic, and could policy decision-making and facilitate transition to normality. These four models were applied to publicly available data of the COVID-19 pandemic for both the USA and Italy. We observed that all models reasonably predicted the future numbers of confirmed cases, deaths, and recoveries of COVID-19. However, for the majority of the analyses, the time series model with autoregressive integrated moving average (ARIMA) and cubic smoothing spline models both had smaller prediction errors and narrower prediction intervals, compared to the Holt and Trigonometric Exponential smoothing state space model with Box-Cox transformation (TBATS) models. Therefore, the former two models were preferable to the latter models. Given similarities in performance of the models in the USA and Italy, the corresponding prediction tools can be applied to other countries grappling with the COVID-19 pandemic, and to any pandemics that can occur in future.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.