-
- Marion Rapp, Alexander Heinzel, Norbert Galldiks, Gabriele Stoffels, Jörg Felsberg, Christian Ewelt, Michael Sabel, Hans J Steiger, Guido Reifenberger, Thomas Beez, Heinz H Coenen, Frank W Floeth, and Karl-Josef Langen.
- Department of Neurosurgery, Heinrich-Heine University, Düsseldorf, Germany.
- J. Nucl. Med. 2013 Feb 1; 54 (2): 229-35.
UnlabelledThe aim of this study was to assess the clinical value of O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET) PET in the initial diagnosis of cerebral lesions suggestive of glioma.MethodsIn a retrospective study, we analyzed the clinical, radiologic, and neuropathologic data of 174 patients (77 women and 97 men; mean age, 45 ± 15 y) who had been referred for neurosurgical assessment of unclear brain lesions and had undergone (18)F-FET PET. Initial histology (n = 168, confirmed after surgery or biopsy) and the clinical course and follow-up MR imaging in 2 patients revealed 66 high-grade gliomas (HGG), 77 low-grade gliomas (LGG), 2 lymphomas, and 25 nonneoplastic lesions (NNL). In a further 4 patients, initial histology was unspecific, but during the course of the disease all patients developed an HGG. The diagnostic value of maximum and mean tumor-to-brain ratios (TBR(max/)TBR(mean)) of (18)F-FET uptake was assessed using receiver-operating-characteristic (ROC) curve analyses to differentiate between neoplastic lesions and NNL, between HGG and LGG, and between high-grade tumor (HGG or lymphoma) and LGG or NNL.ResultsNeoplastic lesions showed significantly higher (18)F-FET uptake than NNL (TBR(max), 3.0 ± 1.3 vs. 1.8 ± 0.5; P < 0.001). ROC analysis yielded an optimal cutoff of 2.5 for TBR(max) to differentiate between neoplastic lesions and NNLs (sensitivity, 57%; specificity, 92%; accuracy, 62%; area under the curve [AUC], 0.76; 95% confidence interval [CI], 0.68-0.84). The positive predictive value (PPV) was 98%, and the negative predictive value (NPV) was 27%. ROC analysis for differentiation between HGG and LGG (TBR(max), 3.6 ± 1.4 vs. 2.4 ± 1.0; P < 0.001) yielded an optimal cutoff of 2.5 for TBR(max) (sensitivity, 80%; specificity, 65%; accuracy, 72%; AUC, 0.77; PPV, 66%; NPV, 79%; 95% CI, 0.68-0.84). Best differentiation between high-grade tumors (HGG or lymphoma) and both NNL and LGG was achieved with a TBR(max) cutoff of 2.5 (sensitivity, 79%; specificity, 72%; accuracy, 75%; AUC, 0.79; PPV, 65%; NPV, 84%; 95% CI, 0.71-0.86). The results for TBR(mean) were similar with a cutoff of 1.9.Conclusion(18)F-FET uptake ratios provide valuable additional information for the differentiation of cerebral lesions and the grading of gliomas. TBR(max) of (18)F-FET uptake beyond the threshold of 2.5 has a high PPV for detection of a neoplastic lesion and supports the necessity of an invasive procedure, for example, biopsy or surgical resection. Low (18)F-FET uptake (TBR(max) < 2.5) excludes a high-grade tumor with high probability.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.