-
J. Antimicrob. Chemother. · Feb 2016
Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis.
- L Tuchscherr, C A Kreis, V Hoerr, L Flint, M Hachmeister, J Geraci, S Bremer-Streck, M Kiehntopf, E Medina, M Kribus, M Raschke, M Pletz, G Peters, and B Löffler.
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany Lorena.TuchscherrdeHauschopp@med.uni-jena.de.
- J. Antimicrob. Chemother. 2016 Feb 1; 71 (2): 438-48.
ObjectivesStaphylococcus aureus osteomyelitis often develops to chronicity despite antimicrobial treatments that have been found to be susceptible in in vitro tests. The complex infection strategies of S. aureus, including host cell invasion and intracellular persistence via the formation of dynamic small colony variant (SCV) phenotypes, could be responsible for therapy-refractory infection courses.MethodsTo analyse the efficacy of antibiotics in the acute and chronic stage of bone infections, we established long-term in vitro and in vivo osteomyelitis models. Antibiotics that were tested include β-lactams, fluoroquinolones, vancomycin, linezolid, daptomycin, fosfomycin, gentamicin, rifampicin and clindamycin.ResultsCell culture infection experiments revealed that all tested antibiotics reduced bacterial numbers within infected osteoblasts when treatment was started immediately, whereas some antibiotics lost their activity against intracellular persisting bacteria. Only rifampicin almost cleared infected osteoblasts in the acute and chronic stages. Furthermore, we detected that low concentrations of gentamicin, moxifloxacin and clindamycin enhanced the formation of SCVs, and these could promote chronic infections. Next, we treated a murine osteomyelitis model in the acute and chronic stages. Only rifampicin significantly reduced the bacterial load of bones in the acute phase, whereas cefuroxime and gentamicin were less effective and gentamicin strongly induced SCV formation. During chronicity none of the antimicrobial compounds tested showed a beneficial effect on bone deformation or reduced the numbers of persisting bacteria.ConclusionsIn all infection models rifampicin was most effective at reducing bacterial loads. In the chronic stage, particularly in the in vivo model, many tested compounds lost activity against persisting bacteria and some antibiotics even induced SCV formation.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.