• Drug safety · Feb 2010

    Prospective data mining of six products in the US FDA Adverse Event Reporting System: disposition of events identified and impact on product safety profiles.

    • Steven Bailey, Ajay Singh, Robert Azadian, Peter Huber, and Michael Blum.
    • Global Safety Surveillance and Epidemiology, Wyeth, Collegeville, Pennsylvania, USA. baileysr@wyeth.com
    • Drug Saf. 2010 Feb 1; 33 (2): 139-46.

    BackgroundThe use of data mining has increased among regulators and pharmaceutical companies. The incremental value of data mining as an adjunct to traditional pharmacovigilance methods has yet to be demonstrated. Specifically, the utility in identifying new safety signals and the resources required to do so have not been elucidated.ObjectivesTo analyse the number and types of disproportionately reported product-event combinations (DRPECs), as well as the final disposition of each, in order to understand the potential utility and resource implications of routinely conducting data mining in the US FDA Adverse Event Reporting System (AERS).MethodsWe generated DRPECs from AERS for six of Wyeth's products, prospectively tracked their dispositions and evaluated the appropriate DRPECs in the company's safety database. We chose EB05 (the lower bound of the 90% confidence interval around the Empirical Bayes Geometric Mean) > or =2 as the appropriate metric, employing stratification based on age, sex and year of report.ResultsA total of 861 DRPECs were identified - the average number of DRPECs was 144 per product. The proportion of unique preferred terms (PTs) in AERS for each drug with an EB05 > or =2 was similar across the six products (5.1-8.5%). Overall, 64.0% (551) of the DRPECs were closed after the initial screening (44.8% labelled, 14.3% indication related, 4.9% non-interpretable). An additional 9.9% (85) had been reviewed within the prior year and were not further reviewed. The remaining 26.1% (225) required full case review. After review of all pertinent reports and additional data, it was determined which of the DRPECs necessitated a formal review by the company's ongoing Safety Review Team (SRT) process. In total, 3.6% (31/861) of the DRPECs, yielding 16 medical concepts, were reviewed by the SRT, leading to seven labelling changes. These labelling changes involved 1.9% of all DRPECs generated. Four of the six compounds reviewed as part of this pilot had an identified labelling change. The workload required for this pilot, which was driven primarily by those DRPECs requiring review, was extensive, averaging 184 hours per product.ConclusionThe number of DRPECs identified for each drug approximately correlated with the number of unique PTs in the database. Over one-half of DRPECs were either labelled as per the company's reference safety information (RSI) or were under review after identification by traditional pharmacovigilance activities, suggesting that for marketed products these methods do identify adverse events detected by traditional pharmacovigilance methods. Approximately three-quarters of the 861 DRPECs identified were closed without case review after triage. Of the approximately one-quarter of DRPECs that required formal case review, seven resulted in an addition to the RSI for the relevant products. While this pilot does not allow us to comment on the utility of routine data mining for all products, it is significant that several new safety concepts were identified through this prospective exercise.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…