• J Neuroeng Rehabil · Oct 2015

    Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors.

    • Daniel A Jacobs and Daniel P Ferris.
    • School of Kinesiology, University of Michigan, 401 Washtenaw Ave CCRB, Ann Arbor, MI, USA.
    • J Neuroeng Rehabil. 2015 Oct 14; 12: 90.

    BackgroundWearable sensor systems can provide data for at-home gait analyses and input to controllers for rehabilitation devices but they often have reduced estimation accuracy compared to laboratory systems. The goal of this study is to evaluate a portable, low-cost system for measuring ground reaction forces and ankle joint torques in treadmill walking and calf raises.MethodsTo estimate the ground reaction forces and ankle joint torques, we developed a custom instrumented insole and a tissue force sensor. Six healthy subjects completed a collection of movements (calf raises, 1.0 m/s walking, and 1.5 m/s walking) on two separate days. We trained artificial neural networks on the study data and compared the estimates to a multi-camera motion system and an instrumented treadmill. We evaluated the relative strength of each sensor by testing each sensor's ability to predict the ankle joint torque calculated from a reference inverse kinematics algorithm. We assessed model accuracy through root mean squared error and normalized root mean square error. We hypothesized that the estimation of the models would have normalized root mean square error measures less than 10 %.ResultsFor walking at 1.0 and walking at 1.5 m/s, the single-task, intra-day and multi-task, intra-day predictions had normalized root mean square error less than 10 % for all three force components and both center of pressure components. For the calf raise task, the single-task, intra-day and multi-task, intra-day predictions had normalized root mean square error less than 10 % for only the anterior-posterior center of pressure. The multi-task, intra-day model had similar predictions to the single-task, intra-day model. The normalized root mean square error of predictions from the insole sensor alone were less than 10 % for walking at 1.0 m/s and 1.5 m/s. No sensor was sufficient for the calf raise task. The combination of the insole sensor and the tendon sensor had lower normalized root mean square error than the individual sensors for all three tasks.ConclusionsThe proposed sensor system provided accurate estimates for five of the six components of the ground reaction kinetics during walking at 1.0 and 1.5 m/s and one of the six components during the calf raise task. The normalized root mean square error of the predictions of the ground reaction forces were similar to published studies using commercial devices. The proposed system of low-cost sensors can provide useful estimations of ankle joint torque for both walking and calf raises for future studies in mobile gait analysis.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…