• Medicine · May 2021

    Comparative Study

    The potential for reduced radiation dose from deep learning-based CT image reconstruction: A comparison with filtered back projection and hybrid iterative reconstruction using a phantom.

    • Ji Eun Lee, Seo-Youn Choi, Jeong Ah Hwang, Sanghyeok Lim, Min Hee Lee, Boem Ha Yi, and Jang Gyu Cha.
    • Department of Radiology, Soonchunhyang University College of Medicine, Bucheon Hospital, Bucheon.
    • Medicine (Baltimore). 2021 May 14; 100 (19): e25814.

    AbstractThe purpose of this phantom study is to compare radiation dose and image quality of abdominal computed tomography (CT) scanned with different tube voltages and tube currents, reconstructed with filtered back projection (FBP), hybrid iterative reconstruction (IR) and deep learning image reconstruction (DLIR) algorithms.A total of 15 CT scans of whole body phantoms were taken with 3 different tube voltages and 5 different tube currents. The images were reconstructed with FBP, 30% and 50% hybrid IR adaptive statistical iterative reconstruction (ASIR-V), and low, medium and high strength DLIR algorithms. The image scanned with tube voltage/tube current of 120 kV/ 200 mA and reconstructed with FBP algorithm was chosen as the reference image. Five radiologists independently analyzed the images individually and also compared it with the reference image in overall, using the visual grading analysis. The mean score of each image was calculated and compared.Using DLIR algorithms, the radiation dose was reduced by 65.5% to 68.1% compared with the dose used in the reference image, while maintaining comparable image quality. Using the DLIR algorithm of medium strength, the image quality was even better than the reference image with a reduced radiation dose up to 36.2% to 50.0%. The DLIR algorithms generated better quality images than ASIR-V algorithms in all the data sets. In addition, among the data sets reconstructed with DLIR algorithms, image quality was the best at the medium strength level, followed by low and high.This phantom study suggests that DLIR algorithms may be considered as a new reconstruction technique by reducing radiation dose while maintaining the image quality of abdominal CTs.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…