• JMIR mHealth and uHealth · Dec 2019

    Randomized Controlled Trial

    Development and Local Contextualization of Mobile Health Messages for Enhancing Disease Management Among Community-Dwelling Stroke Patients in Rural China: Multimethod Study.

    • Enying Gong, Wanbing Gu, Erdan Luo, Liwei Tan, Julian Donovan, Cheng Sun, Ying Yang, Longkai Zang, Peng Bao, and Lijing L Yan.
    • Global Health Research Center, Duke Kunshan University, Kunshan, China.
    • JMIR Mhealth Uhealth. 2019 Dec 17; 7 (12): e15758.

    BackgroundRural China has experienced an increasing health burden because of stroke. Stroke patients in rural communities have relatively poor awareness of and adherence to evidence-based secondary prevention and self-management of stroke. Mobile technology represents an innovative way to influence patient behaviors and improve their self-management.ObjectiveThis study is part of the System-Integrated Technology-Enabled Model of Care (the SINEMA trial) to improve the health of stroke patients in resource-poor settings in China. This study aimed to develop and pilot-test a mobile phone message-based package, as a component of the SINEMA intervention.MethodsThe SINEMA trial was conducted in Nanhe County, Hebei Province, China. A total of 4 villages were selected for pretrial contextual research and pilot study. The 5 stages for developing the mobile phone messages were as follows: (1) conducting literature review on existing message banks and analyzing the characteristics of these banks; (2) interviewing stroke patients and caregivers to identify their needs; (3) drafting message contents and designing dispatching algorithms for a 3-month pilot testing; (4) collecting feedback from pilot participants through questionnaire survey and in-depth interviews on facilitators and barriers related to their acceptance and understanding of messages; and (5) finalizing the message-based intervention based on participants' feedback for the SINEMA trial.ResultsOn the basis of 5 existing message banks screened out of 120 papers and patients' needs identified from 32 in-depth interviews among stroke patients and caregivers, we developed a message bank containing 224 messages for a pilot study among 54 community-dwelling stroke patients from 4 villages. Of 54 participants, 51 (response rate: 94.4%) completed the feedback survey after receiving daily messages for 3 months. Participants' mean age was 68 years (SD 9.2), and about half had never been to school. We observed a higher proportion of participants who were in favor of voice messages (23/42, 54%) than text messages (14/40, 35%). Among participants who received voice messages (n=43) and text messages (n=40), 41 and 30, respectively, self-reported a full or partial understanding of the contents, and 39 (39/43, 91%) and 32 (32/40, 80%), respectively, rated the messages as helpful. Analyses of the 32 interviews further revealed that voice messages containing simple and single-theme content, in plain language, with a repeated structure, a slow playback speed, and recorded in local dialect, were preferred by rural stroke patients. In addition, the dispatching algorithm and tools may also influence the acceptance of message-based interventions.ConclusionsBy applying multiple methodologies and conducting a pilot study, we designed and fine-tuned a voice message-based intervention package for promoting secondary prevention among community-dwelling stroke patients in rural China. Design of the content and dispatching algorithm should engage both experts and end users and adequately consider the needs and preferences of recipients.©Enying Gong, Wanbing Gu, Erdan Luo, Liwei Tan, Julian Donovan, Cheng Sun, Ying Yang, Longkai Zang, Peng Bao, Lijing L Yan. Originally published in JMIR mHealth and uHealth (http://mhealth.jmir.org), 17.12.2019.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.