• Brain research · Nov 2006

    Combining motor training with transplantation of rat bone marrow stromal cells does not improve repair or recovery in rats with thoracic contusion injuries.

    • Hiroyuki Yoshihara, Jed S Shumsky, Birgit Neuhuber, Takanobu Otsuka, Itzhak Fischer, and Marion Murray.
    • Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
    • Brain Res. 2006 Nov 13; 1119 (1): 65-75.

    AbstractPrevious studies have demonstrated that either transplantation of bone marrow stromal cells (MSC) or physical exercise regimens can elicit limited functional recovery following spinal cord injury, presumably through different mechanisms. The present study examined whether transplantation of MSC derived from transgenic Fischer alkaline phosphatase (AP) rats, in combination with exercise, would have synergistic effects leading to recovery of function that is greater than either alone. Adult female Sprague-Dawley rats received a moderate thoracic contusion injury and were divided into three groups: operated controls (Op-Control), MSC transplant recipients (MSC), and MSC transplant recipients plus exercise (MSC+Ex). Nine days after contusion, a Vitrogen matrix +/-one million MSC was injected into the lesion site in all animals. Immunosuppression with high doses of Cyclosporine A, required for MSC survival, was provided for all animals. Passive hindlimb exercise on motorized bicycles was applied 1 h/day, 3 days/week to the MSC+Ex group. A battery of behavioral tests was performed weekly to assess motor and sensory functions in all 3 groups for 12 weeks. Morphological evaluation included MSC survival, evidence of axonal growth into grafts, phenotypic analysis of MSC, and lesion/transplant size. The weight of the medial gastrocnemius muscle, a hindlimb muscle activated during stance, was used to identify extent of atrophy. No differences in motor recovery were found among the three groups. MSC survived 3 months after transplantation, indicating that the immunosuppression treatment was successful. The extent of survival was variable, and there was no correlation between MSC survival and behavioral scores. The matrix persisted, filling the lesion cavity, and some axons grew into the lesion/matrix but to a similar extent in all groups. There was no difference in lesion/matrix size among groups, indicating no neuroprotective effect on the host provided by the treatments. Immunocytochemical analysis provided no evidence that MSC differentiated into neurons, astrocytes or oligodendrocytes. Muscle mass of the medial gastrocnemius was diminished in the Op-Control group indicating significant atrophy, but was partially preserved in both the MSC and MSC+Ex groups. Our results indicate that combining the beneficial effects of rat MSC and this exercise protocol was not sufficient to enhance behavioral recovery.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.