• Intern Emerg Med · Feb 2017

    Cadaver-based training is superior to simulation training for cricothyrotomy and tube thoracostomy.

    • James Kimo Takayesu, David Peak, and Dana Stearns.
    • Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA. jtakayesu@partners.org.
    • Intern Emerg Med. 2017 Feb 1; 12 (1): 99-102.

    AbstractEmergency medicine (EM) training mandates that residents be able to competently perform low-frequency critical procedures upon graduation. Simulation is the main method of training in addition to clinical patient care. Access to cadaver-based training is limited due to cost and availability. The relative fidelity and perceived value of cadaver-based simulation training is unknown. This pilot study sought to describe the relative value of cadaver training compared to simulation for cricothyrotomy and tube thoracostomy. To perform a pilot study to assess whether there is a significant difference in fidelity and educational experience of cadaver-based training compared to simulation training. To understand how important this difference is in training residents in low-frequency procedures. Twenty-two senior EM residents (PGY3 and 4) who had completed standard simulation training on cricothyrotomy and tube thoracostomy participated in a formalin-fixed cadaver training program. Participants were surveyed on the relative fidelity of the training using a 100 point visual analogue scale (VAS) with 100 defined as equal to performing the procedure on a real patient. Respondents were also asked to estimate how much the cadaveric training improved the comfort level with performing the procedures on a scale between 0 and 100 %. Open-response feedback was also collected. The response rate was 100 % (22/22). The average fidelity of the cadaver versus simulation training was 79.9 ± 7.0 vs. 34.7 ± 13.4 for cricothyrotomy (p < 0.0001) and 86 ± 8.6 vs. 38.4 ± 19.3 for tube thoracostomy (p < 0.0001). Improvement in comfort levels performing procedures after the cadaveric training was rated as 78.5 ± 13.3 for tube thoracostomy and 78.7 ± 14.3 for cricothyrotomy. All respondents felt this difference in fidelity to be important for procedural training with 21/22 respondents specifically citing the importance of superior landmark and tissue fidelity compared to simulation training. Cadaver-based training provides superior landmark and tissue fidelity compared to simulation training and may be a valuable addition to EM residency training for certain low-frequency procedures.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.