• J Neuroeng Rehabil · May 2018

    Case Reports

    Two ways to improve myoelectric control for a transhumeral amputee after targeted muscle reinnervation: a case study.

    • Yang Xu, Dingguo Zhang, Yang Wang, Juntao Feng, and Wendong Xu.
    • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Dongchuan Road, Shanghai, 200240, China.
    • J Neuroeng Rehabil. 2018 May 10; 15 (1): 37.

    BackgroundMyoelectric control of multifunctional prostheses is challenging for individuals with high-level amputations due to insufficient surface electromyography (sEMG) signals. A surgical technique called targeted muscle reinnervation (TMR) has achieved impressive improvements in myoelectric control by providing more sEMG control signals. In this case, some channels of sEMG signals are coupled after TMR, which limits the performance of conventional amplitude-based control for upper-limb prostheses.MethodsIn this paper, two different ways (training and algorithms) were attempted to solve the problem in a transhumeral amputee after TMR. Firstly, effect of rehabilitation training on generating independent sEMG signals was investigated. The results indicated that some sEMG signals recorded were still coupled over the targeted muscles after rehabilitation training for about two months. Secondly, pattern recognition (PR) algorithm was then applied to classify the sEMG signals. In the second way, to further improve the real-time performance of prosthetic control, a post-processing method named as mean absolute value-based (MAV-based) threshold switches was utilized.ResultsUsing the improved algorithms, substantial improvement was shown in a subset of the modified Action Research Arm Test (ARAT). Compared with common PR control without post-processing method, the total scores increased more than 18% with majority vote and more than 58% with MAV-based threshold switches. The amputee was able to finish all the tasks within the allotted time with the standard MAV-based threshold switches. Subjectively the amputee preferred the PR control with MAV-based threshold switches and reported it to be more accurate and much smoother both in experiment and practical use.ConclusionsAlthough the sEMG signals were still coupled after rehabilitation training on the TMR patient, the online performance of the prosthetic operation was improved through application of PR control with combination of the MAV-based threshold switches.Trial RegistrationRetrospectively registered http://www.chictr.org.cn/showproj.aspx?proj=22058 .

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.