-
Experimental neurology · Jun 2019
Detection of brain specific cardiolipins in plasma after experimental pediatric head injury.
- Tamil S Anthonymuthu, Elizabeth M Kenny, Zachary E Hier, Clark Robert S B RSB Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburg, Patrick M Kochanek, Valerian E Kagan, and Hülya Bayır.
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA; Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Exp. Neurol. 2019 Jun 1; 316: 63-73.
AbstractCardiolipin (CL) is a mitochondria-specific phospholipid that is central to maintenance and regulation of mitochondrial bioenergetic and metabolic functions. CL molecular species display great tissue variation with brain exhibiting a distinct, highly diverse CL population. We recently showed that the appearance of unique brain-type CLs in plasma could serve as a brain-specific marker of mitochondrial/tissue injury in patients after cardiac arrest. Mitochondrial dysfunction has been increasingly implicated as a critical mechanism underlying the pathogenesis of traumatic brain injury (TBI). Therefore, we hypothesized that unique, brain-specific CL species from the injured brain are released to the peripheral circulation after TBI. To test this hypothesis, we performed a high-resolution mass spectrometry based phospholipidomics analysis of post-natal day (PND)17 rat brain and plasma after controlled cortical impact. We found a time-dependent increase in plasma CLs after TBI including the aforementioned brain-specific CL species early after injury, whereas CLs were significantly decreased in the injured brain. Compositional and quantitative correlational analysis suggested a possible release of CL into the systemic circulation following TBI. The identification of brain-type CLs in systemic circulation may indicate underlying mitochondrial dysfunction/loss after TBI. They may have potential as pharmacodynamics response biomarkers for targeted therapies.Copyright © 2019 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.