• Eur J Radiol · Jul 2014

    Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging.

    • M C Aznar, R Sersar, J Saabye, C N Ladefoged, F L Andersen, J H Rasmussen, J Löfgren, and T Beyer.
    • Department of Oncology, Section of Radiotherapy 3994, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark. Electronic address: marianne.aznar@regionh.dk.
    • Eur J Radiol. 2014 Jul 1; 83 (7): 1177-1183.

    PurposeIn combined PET/MRI standard PET attenuation correction (AC) is based on tissue segmentation following dedicated MR sequencing and, typically, bone tissue is not represented. We evaluate PET quantification in whole-body (WB)-PET/MRI following MR-AC without considering bone attenuation and then investigate different strategies to account for bone tissue in clinical PET/MR imaging. To this purpose, bone tissue representation was extracted from separate CT images, and different bone representations were simulated from hypothetically derived MR-based bone classifications.MethodsTwenty oncology patients referred for a PET/CT were injected with either [18F]-FDG or [18F]-NaF and imaged on PET/CT (Biograph TruePoint/mCT, Siemens) and PET/MRI (mMR, Siemens) following a standard single-injection, dual-imaging clinical WB-protocol. Routine MR-AC was based on in-/opposed-phase MR imaging (orgMR-AC). PET(/MRI) images were reconstructed (AW-OSEM, 3 iterations, 21 subsets, 4mm Gaussian) following routine MR-AC and MR-AC based on four modified attenuation maps. These modified attenuation maps were created for each patient by non-linear co-registration of the CT images to the orgMR-AC images, and adding CT bone mask values representing cortical bone: 1200HU (cortCT), spongiosa bone: 350HU (spongCT), average CT value (meanCT) and original CT values (orgCT). Relative difference images of the PET following AC using the modified attenuation maps were compared. SUVmean was calculated in anatomical reference regions and for PET-positive lesions.ResultsThe relative differences in SUVmean across patients following orgMR-AC and orgCT in soft tissue lesions and in bone lesions were similar (range: 0.0% to -22.5%), with an average underestimation of SUVmean of 7.2% and 10.0%, respectively when using orgMR-AC. In bone lesions, spongCT values were closest to orgCT (median bias of 1.3%, range: -9.0% to 13.5%) while the overestimation of SUVmean with respect to orgCT was highest for cortCT (40.8%, range: 1.5% to 110.8%). For soft tissue lesions the bias was highest using cortCT (13.4%, range: -2.3% to 17.3%) and lowest for spongCT (-2.2%, range: 0.0% to -13.7%).ConclusionsIn PET/MR imaging using standard MR-AC PET uptake values in soft lesions and bone lesions are underestimated by about 10%. In individual patients this bias can be as high as 22%, which is significant during clinical follow-up exams. If bone segmentation is available, then assigning a fixed attenuation value of spongious bone to all bone structures appears reasonable and results in only a minor bias of 5%, or less in uptake values of soft tissue and bone lesions.Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.