• J. Med. Internet Res. · Feb 2021

    Public Opinions and Concerns Regarding the Canadian Prime Minister's Daily COVID-19 Briefing: Longitudinal Study of YouTube Comments Using Machine Learning Techniques.

    • Chengda Zheng, Jia Xue, Yumin Sun, and Tingshao Zhu.
    • Faculty of Information, University of Toronto, Toronto, ON, Canada.
    • J. Med. Internet Res. 2021 Feb 23; 23 (2): e23957.

    BackgroundDuring the COVID-19 pandemic in Canada, Prime Minister Justin Trudeau provided updates on the novel coronavirus and the government's responses to the pandemic in his daily briefings from March 13 to May 22, 2020, delivered on the official Canadian Broadcasting Corporation (CBC) YouTube channel.ObjectiveThe aim of this study was to examine comments on Canadian Prime Minister Trudeau's COVID-19 daily briefings by YouTube users and track these comments to extract the changing dynamics of the opinions and concerns of the public over time.MethodsWe used machine learning techniques to longitudinally analyze a total of 46,732 English YouTube comments that were retrieved from 57 videos of Prime Minister Trudeau's COVID-19 daily briefings from March 13 to May 22, 2020. A natural language processing model, latent Dirichlet allocation, was used to choose salient topics among the sampled comments for each of the 57 videos. Thematic analysis was used to classify and summarize these salient topics into different prominent themes.ResultsWe found 11 prominent themes, including strict border measures, public responses to Prime Minister Trudeau's policies, essential work and frontline workers, individuals' financial challenges, rental and mortgage subsidies, quarantine, government financial aid for enterprises and individuals, personal protective equipment, Canada and China's relationship, vaccines, and reopening.ConclusionsThis study is the first to longitudinally investigate public discourse and concerns related to Prime Minister Trudeau's daily COVID-19 briefings in Canada. This study contributes to establishing a real-time feedback loop between the public and public health officials on social media. Hearing and reacting to real concerns from the public can enhance trust between the government and the public to prepare for future health emergencies.©Chengda Zheng, Jia Xue, Yumin Sun, Tingshao Zhu. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 23.02.2021.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.