-
- An Tang, Roger Tam, Alexandre Cadrin-Chênevert, Will Guest, Jaron Chong, Joseph Barfett, Leonid Chepelev, Robyn Cairns, J Ross Mitchell, Mark D Cicero, Manuel Gaudreau Poudrette, Jacob L Jaremko, Caroline Reinhold, Benoit Gallix, Bruce Gray, Raym Geis, and Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group.
- Department of Radiology, Université de Montréal, Montréal, Québec, Canada; Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada. Electronic address: an.tang@umontreal.ca.
- Can Assoc Radiol J. 2018 May 1; 69 (2): 120-135.
AbstractArtificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada.Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.