• J. Thorac. Cardiovasc. Surg. · Jan 2014

    Randomized Controlled Trial

    Systemic effects of carbon dioxide insufflation technique for de-airing in left-sided cardiac surgery.

    • Maya Landenhed, Faleh Al-Rashidi, Sten Blomquist, Peter Höglund, Leif Pierre, and Bansi Koul.
    • Department of Cardiothoracic Surgery, Faculty of Medicine, Lund University, Skåne University Hospital, Lund, Sweden. Electronic address: maya.landenhed@med.lu.se.
    • J. Thorac. Cardiovasc. Surg.. 2014 Jan 1;147(1):295-300.

    ObjectiveSystemic effects of carbon dioxide (CO2) insufflation during left-sided cardiac surgery were evaluated in a prospective randomized study, with regard to acid-base status, gas exchange, cerebral hemodynamics, and red blood cell morphology.MethodsTwenty patients undergoing elective left-sided cardiac surgery were randomized to de-airing procedure either by CO2 insufflation technique (CO2 group, n = 10) or by Lund technique without CO2 insufflation (Lund group, n = 10). Groups underwent assessment of acid-base status by intermittent arterial blood gases and in-line blood gas monitoring. Capnography was used to determine volume of CO2 produced. Cerebral hemodynamics was measured by transcranial Doppler sonography and near-infrared spectroscopy. Red cell morphology from cardiotomy suction and vent tubing was studied by scanning electron microscopy.ResultsPatients in the CO2 group consequently developed significantly higher levels of hypercapnia with a concomitant increase in the volume of CO2 produced despite significantly higher oxygenator gas flows compared with the Lund group. Effects on cerebral hemodynamics were observed in the CO2 group with significantly higher blood flow velocities in the middle cerebral artery and higher regional cerebral saturation. Red blood cell damage was observed in the CO2 group by scanning electron microscopy (97% in CO2 group vs 18% in Lund group).ConclusionsInsufflation of CO2 into the cardiothoracic wound cavity during left-sided cardiac surgery can induce hypercapnic acidosis and increased cerebral blood flow and local blood cell damage. These systemic effects should be monitored by in-line capnography and acid-base measurements for early and effective correction by increase in gas flows to the oxygenator.Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…