-
J. Med. Internet Res. · Sep 2020
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.
- Roman C Maron, Jochen S Utikal, Achim Hekler, Axel Hauschild, Elke Sattler, Wiebke Sondermann, Sebastian Haferkamp, Bastian Schilling, Markus V Heppt, Philipp Jansen, Markus Reinholz, Cindy Franklin, Laurenz Schmitt, Daniela Hartmann, Eva Krieghoff-Henning, Max Schmitt, Michael Weichenthal, Christof von Kalle, Stefan Fröhling, and Titus J Brinker.
- Digital Biomarkers for Oncology Group (DBO), National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- J. Med. Internet Res. 2020 Sep 11; 22 (9): e18091.
BackgroundEarly detection of melanoma can be lifesaving but this remains a challenge. Recent diagnostic studies have revealed the superiority of artificial intelligence (AI) in classifying dermoscopic images of melanoma and nevi, concluding that these algorithms should assist a dermatologist's diagnoses.ObjectiveThe aim of this study was to investigate whether AI support improves the accuracy and overall diagnostic performance of dermatologists in the dichotomous image-based discrimination between melanoma and nevus.MethodsTwelve board-certified dermatologists were presented disjoint sets of 100 unique dermoscopic images of melanomas and nevi (total of 1200 unique images), and they had to classify the images based on personal experience alone (part I) and with the support of a trained convolutional neural network (CNN, part II). Additionally, dermatologists were asked to rate their confidence in their final decision for each image.ResultsWhile the mean specificity of the dermatologists based on personal experience alone remained almost unchanged (70.6% vs 72.4%; P=.54) with AI support, the mean sensitivity and mean accuracy increased significantly (59.4% vs 74.6%; P=.003 and 65.0% vs 73.6%; P=.002, respectively) with AI support. Out of the 10% (10/94; 95% CI 8.4%-11.8%) of cases where dermatologists were correct and AI was incorrect, dermatologists on average changed to the incorrect answer for 39% (4/10; 95% CI 23.2%-55.6%) of cases. When dermatologists were incorrect and AI was correct (25/94, 27%; 95% CI 24.0%-30.1%), dermatologists changed their answers to the correct answer for 46% (11/25; 95% CI 33.1%-58.4%) of cases. Additionally, the dermatologists' average confidence in their decisions increased when the CNN confirmed their decision and decreased when the CNN disagreed, even when the dermatologists were correct. Reported values are based on the mean of all participants. Whenever absolute values are shown, the denominator and numerator are approximations as every dermatologist ended up rating a varying number of images due to a quality control step.ConclusionsThe findings of our study show that AI support can improve the overall accuracy of the dermatologists in the dichotomous image-based discrimination between melanoma and nevus. This supports the argument for AI-based tools to aid clinicians in skin lesion classification and provides a rationale for studies of such classifiers in real-life settings, wherein clinicians can integrate additional information such as patient age and medical history into their decisions.©Roman C Maron, Jochen S Utikal, Achim Hekler, Axel Hauschild, Elke Sattler, Wiebke Sondermann, Sebastian Haferkamp, Bastian Schilling, Markus V Heppt, Philipp Jansen, Markus Reinholz, Cindy Franklin, Laurenz Schmitt, Daniela Hartmann, Eva Krieghoff-Henning, Max Schmitt, Michael Weichenthal, Christof von Kalle, Stefan Fröhling, Titus J Brinker. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 11.09.2020.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.