-
Investigative radiology · Jun 2007
Comparative StudyHigh-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study.
- Gerwin P Schmidt, Bernd Wintersperger, Anno Graser, Andrea Baur-Melnyk, Maximilian F Reiser, and Stefan O Schoenberg.
- Institute of Clinical Radiology, University Hospitals Munich-Grosshadern, LMU, Munich, Germany. gerwin.schmidt@med.uni-muenchen.de
- Invest Radiol. 2007 Jun 1; 42 (6): 449-59.
ObjectivesTo analyze the impact of altered magnetic field properties on image quality and on potential artifacts when an established whole-body magnetic resonance imaging (WB-MRI) protocol at 1.5 Tesla (T) is migrated to 3 T.Materials And MethodsFifteen volunteers underwent noncontrast magnetic resonance imaging (MRI) on 32-channel whole body-scanners at 1.5 and 3 T with the use of parallel acquisition techniques (PAT). Coronal T1-weighted TSE- and short tau inversion recovery (STIR)-sequences at 4 body levels including sagittal imaging of the whole spine were performed. Additional axial HASTE-imaging of lung and abdomen, T1-/T2-weighted-TSE- and EPI-sequences of the brain and T2-weighted respiratory-triggered imaging of the liver was acquired. Both data sets were compared by 2 independent readers in respect to artifacts and image quality using a 5-point scale. Regions of pronounced artifacts were defined.ResultsOverall image impression was both qualitatively rated as "good" at 1.5 and 3 T for T1-w-TSE- and STIR-imaging of the whole body and spine. At 1.5 T, significantly better quantitative values for overall image quality were found for WB-STIR, T2-w-TSE imaging of the liver and brain (Wilcoxon Mann-Whitney U Test; P < 0.05), overall rated as good at 3 T. Significantly higher dielectric effects at 3 T were affecting T1-w- and STIR-WB-MRI, and HASTE of the abdomen and better image homogeneity at 1.5 T was observed for T1-weighted-/STIR-WB-MRI and T1-w-TSE-imaging of the spine. Pulsation artifacts were significantly increased at 3 T for T1-w WB-MRI. Significantly higher susceptibility artifacts were found for GRE-sequences of the brain at 3 T. Motion artifacts, Gibbs-Ringing, and image distortion was not significantly different and showed slightly higher quantitative values at 3 T (except for HASTE imaging of the abdomen). Overall scan time was 45 minutes and 44 seconds at 1.5 T and 40 minutes and 28 seconds at 3 T at identical image resolution.ConclusionThree Tesla WB-MRI is feasible with good image quality comparable to 1.5 T. 3.0 T WB-MRI shows significantly more artifacts with a mild to moderate impact on image assessment. Therefore 1.5 T WB-MRI is the preferred image modality. Overall scan time at 3 T is reduced with the use of parallel imaging at a constant image resolution.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.