• Stud Health Technol Inform · Jun 2020

    Application of Topic Modeling to Tweets as the Foundation for Health Disparity Research for COVID-19.

    • Michelle Odlum, Hwayoung Cho, Peter Broadwell, Nicole Davis, Maria Patrao, Deborah Schauer, Michael E Bales, Carmela Alcantara, and Sunmoo Yoon.
    • School of Nursing, Columbia University, USA.
    • Stud Health Technol Inform. 2020 Jun 26; 272: 24-27.

    AbstractWe randomly extracted publicly available Tweets mentioning COVID-19 related terms (n=2,558,474 Tweets) from Tweet corpora collected daily using an API from Jan 21st to May 3rd, 2020. We applied a clustering algorithm to publicly available Tweets authored by African Americans (n=1,763) to detect topics and sentiment applying natural language processing (NLP). We visualized fifteen topics (four themes) using network diagrams (Newman modularity 0.74). Compared to the COVID-19 related Tweets authored by others, positive sentiments, cohesively encouraging online discussions (e.g., Black strong 27.1%, growing up Blacks 22.8%, support Black business 17.0%, how to build resilience 7.8%), and COVID-19 prevention behaviors (e.g., masks 4.7%, encouraging social distancing 9.4%) were uniquely observed in African American Twitter communities. Application of topic modeling techniques to streaming social media Twitter provides the foundation for research team insights regarding information and future virtual based intervention and social media based health disparity research for COVID-19.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.