• Cancer · Mar 2014

    ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer.

    • Rebecca J Leeman-Neill, Lindsey M Kelly, Pengyuan Liu, Alina V Brenner, Mark P Little, Tetiana I Bogdanova, Viktoria N Evdokimova, Maureen Hatch, Liudmyla Y Zurnadzy, Marina N Nikiforova, Ning J Yue, Miao Zhang, Kiyohiko Mabuchi, Mykola D Tronko, and Yuri E Nikiforov.
    • Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
    • Cancer. 2014 Mar 15; 120 (6): 799-807.

    BackgroundIn their previous analysis of papillary thyroid carcinomas (PTCs) from an Ukrainian-American cohort that was exposed to iodine-131 ((131) I) from the Chernobyl accident, the authors identified RET/PTC rearrangements and other driver mutations in 60% of tumors.MethodsIn this study, the remaining mutation-negative tumors from that cohort were analyzed using RNA sequencing (RNA-Seq) and reverse transcriptase-polymerase chain reaction to identify novel chromosomal rearrangements and to characterize their relation with radiation dose.ResultsThe ETS variant gene 6 (ETV6)-neurotrophin receptor 3 (NTRK3) rearrangement (ETV6-NTRK3) was identified by RNA-Seq in a tumor from a patient who received a high (131) I dose. Overall, the rearrangement was detected in 9 of 62 (14.5%) post-Chernobyl PTCs and in 3 of 151 (2%) sporadic PTCs (P = .019). The most common fusion type was between exon 4 of ETV6 and exon 14 of NTRK3. The prevalence of ETV6-NTRK3 rearrangement in post-Chernobyl PTCs was associated with increasing (131) I dose, albeit at borderline significance (P = .126). The group of rearrangement-positive PTCs (ETV6-NTRK3, RET/PTC, PAX8-PPARγ) was associated with significantly higher dose response compared with the group of PTCs with point mutations (BRAF, RAS; P < .001). In vitro exposure of human thyroid cells to 1 gray of (131) I and γ-radiation resulted in the formation of ETV6-NTRK3 rearrangement at a rate of 7.9 × 10(-6) cells and 3.0 × 10(-6) cells, respectively.ConclusionsThe authors report the occurrence of ETV6-NTRK3 rearrangements in thyroid cancer and demonstrate that this rearrangement is significantly more common in tumors associated with exposure to (131) I and has a borderline significant dose response. Moreover, ETV6-NTRK3 rearrangement can be directly induced in thyroid cells by ionizing radiation in vitro and, thus, may represent a novel mechanism of radiation-induced carcinogenesis.© 2013 American Cancer Society.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.