• Drug Metab. Dispos. · Mar 2010

    In vitro assessment of metabolic drug-drug interaction potential of apixaban through cytochrome P450 phenotyping, inhibition, and induction studies.

    • Lifei Wang, Donglu Zhang, Nirmala Raghavan, Ming Yao, Li Ma, Charles E Frost, Charles A Frost, Brad D Maxwell, Shiang-yuan Chen, Kan He, Theunis C Goosen, W Griffith Humphreys, and Scott J Grossman.
    • Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey 08543, USA.
    • Drug Metab. Dispos. 2010 Mar 1; 38 (3): 448-58.

    AbstractApixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. The metabolic drug-drug interaction potential of apixaban was evaluated in vitro. The compound did not show cytochrome P450 inhibition (IC(50) values >20 microM) in incubations of human liver microsomes with the probe substrates of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4/5. Apixaban did not show any effect at concentrations up to 20 muM on enzyme activities or mRNA levels of selected P450 enzymes (CYP1A2, 2B6, and 3A4/5) that are sensitive to induction in incubations with primary human hepatocytes. Apixaban showed a slow metabolic turnover in incubations of human liver microsomes with formation of O-demethylation (M2) and hydroxylation products (M4 and M7) as prominent in vitro metabolites. Experiments with human cDNA-expressed P450 enzymes and P450 chemical inhibitors and correlation with P450 activities in individual human liver microsomes demonstrated that the oxidative metabolism of apixaban for formation of all metabolites was predominantly catalyzed by CYP3A4/5 with a minor contribution of CYP1A2 and CYP2J2 for formation of M2. The contribution of CYP2C8, 2C9, and 2C19 to metabolism of apixaban was less significant. In addition, a human absorption, distribution, metabolism, and excretion study showed that more than half of the dose was excreted as unchanged parent (f(m CYP) <0.5), thus significantly reducing the overall metabolic drug-drug interaction potential of apixaban. Together with a low clinical efficacious concentration and multiple clearance pathways, these results demonstrate that the metabolic drug-drug interaction potential between apixaban and coadministered drugs is low.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.