-
- Matthias Hofmann, Ilja Bezrukov, Frederic Mantlik, Philip Aschoff, Florian Steinke, Thomas Beyer, Bernd J Pichler, and Bernhard Schölkopf.
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany.
- J. Nucl. Med. 2011 Sep 1; 52 (9): 1392-9.
UnlabelledPET/MRI is an emerging dual-modality imaging technology that requires new approaches to PET attenuation correction (AC). We assessed 2 algorithms for whole-body MRI-based AC (MRAC): a basic MR image segmentation algorithm and a method based on atlas registration and pattern recognition (AT&PR).MethodsEleven patients each underwent a whole-body PET/CT study and a separate multibed whole-body MRI study. The MR image segmentation algorithm uses a combination of image thresholds, Dixon fat-water segmentation, and component analysis to detect the lungs. MR images are segmented into 5 tissue classes (not including bone), and each class is assigned a default linear attenuation value. The AT&PR algorithm uses a database of previously aligned pairs of MRI/CT image volumes. For each patient, these pairs are registered to the patient MRI volume, and machine-learning techniques are used to predict attenuation values on a continuous scale. MRAC methods are compared via the quantitative analysis of AC PET images using volumes of interest in normal organs and on lesions. We assume the PET/CT values after CT-based AC to be the reference standard.ResultsIn regions of normal physiologic uptake, the average error of the mean standardized uptake value was 14.1% ± 10.2% and 7.7% ± 8.4% for the segmentation and the AT&PR methods, respectively. Lesion-based errors were 7.5% ± 7.9% for the segmentation method and 5.7% ± 4.7% for the AT&PR method.ConclusionThe MRAC method using AT&PR provided better overall PET quantification accuracy than the basic MR image segmentation approach. This better quantification was due to the significantly reduced volume of errors made regarding volumes of interest within or near bones and the slightly reduced volume of errors made regarding areas outside the lungs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.