• J. Nucl. Med. · Jun 2015

    Clinical Assessment of Emission- and Segmentation-Based MR-Guided Attenuation Correction in Whole-Body Time-of-Flight PET/MR Imaging.

    • Abolfazl Mehranian and Habib Zaidi.
    • Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland.
    • J. Nucl. Med. 2015 Jun 1; 56 (6): 877-83.

    UnlabelledThe joint maximum-likelihood reconstruction of activity and attenuation (MLAA) for emission-based attenuation correction has regained attention since the advent of time-of-flight PET/MR imaging. Recently, we improved the performance of the MLAA algorithm using an MR imaging-constrained gaussian mixture model (GMM). In this study, we compare the performance of our proposed algorithm with standard 4-class MR-based attenuation correction (MRAC) implemented on commercial systems.MethodsFive head and neck (18)F-FDG patients were scanned on PET/MR imaging and PET/CT scanners. Dixon fat and water MR images were registered to CT images. MRAC maps were derived by segmenting the MR images into 4 tissue classes and assigning predefined attenuation coefficients. For MLAA-GMM, MR images were segmented into known tissue classes, including fat, soft tissue, lung, background air, and an unknown MR low-intensity class encompassing cortical bones, air cavities, and metal artifacts. A coregistered bone probability map was also included in the unknown tissue class. Finally, the GMM prior was constrained over known tissue classes of attenuation maps using unimodal gaussians parameterized over a patient population.ResultsThe results showed that the MLAA-GMM algorithm outperformed the MRAC method by differentiating bones from air gaps and providing more accurate patient-specific attenuation coefficients of soft tissue and lungs. It was found that the MRAC and MLAA-GMM methods resulted in average standardized uptake value errors of -5.4% and -3.5% in the lungs, -7.4% and -5.0% in soft tissues/lesions, and -18.4% and -10.2% in bones, respectively.ConclusionThe proposed MLAA algorithm is promising for accurate derivation of attenuation maps on time-of-flight PET/MR systems.© 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…